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Abstract

Intel Software Guard Extensions (SGX) are a new set of CPU instructions which enable trusted and
isolated execution of selected sections of application code in hardware containers called enclaves.
An enclave acts as a reverse sandbox: its private memory and execution state are isolated from
any software outside the enclave, including an OS and/or a hypervisor, yet the code running in the
enclave may access untrusted memory of the owner process. While SGX provides the convenience
of a standard x86 execution environment inside the enclave, there are important differences in the
way enclaves manage their private memory and interact with the host OS.

In this work, we try to understand better and improve the performance and security of SGX
enclaves. First, we present Foreshadow, which is an attack on SGX that extracts full memory dumps
of SGX enclaves thereby compromising SGX’s integrity and confidentiality guarantees.

Next, previous work (Eleos, EuroSys’17) has shown that performance of SGX paging can be
improved by using software user-level paging, called SUVM. In this thesis we show that SUVM for
a single enclave is not effective for multi-enclave systems, and introduce Multi-SUVM. A system
that supports SUVM for multi enclave environment with kernel space and in-enclave modifications.
We show in Multi-SUVM up to 65% speedup, and up to 3.4× higher throughput than SUVM.
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Chapter 1

Introduction

Intel Software Guard eXtensions (SGX) is a new technology for x86 processors that enables a
user to execute sensitive code handling secret data on a remote x86 machine. SGX protects the
user’s sensitive data from a (potentially malicious) remote host owner and Operating System (OS).
In addition, SGX provides the user with tools to verify that the owner of a remote host cannot read
the program’s secrets or compromise the integrity of the computation that the program is trying
to perform. For example, a content streaming company could use SGX to protect their Digital
rights management (DRM), so the client would be able to use the content only within a specific
application and for a pre-determined number of times (e.g., viewing a movie only once using an
authorized player).

To support private and secure code execution, SGX provides isolated execution environments,
called enclaves, which offer confidentiality and integrity guarantees to programs running inside
them. While SGX’s security properties strongly rely on the processor’s hardware implementation,
SGX removes all other system components (such as the memory hardware, the firmware, and the
operating system) from the Trusted Computing Base (TCB). In particular, SGX ensures that the
processor and memory states of an enclave are only accessible to the code running inside it and that
they remain out of reach to all other enclaves and software, running at any privilege level, including
a potentially malicious operating system (OS), and/or the hypervisor. Finally, SGX provides a
remote attestation mechanism, which allows enclaves to prove to remote parties that they have been
correctly initialized on a genuine (hence, presumed secure) Intel processor.

To achieve this protection, SGX encrypts and authenticates all data that exits the CPU die,
thereby protecting making it impossible for malicious applications or even OS and Hypervisor can-
not read or modify enclave’s private code and data. All write attempts will be discarded, and all
read attempts will return 0xFF, regardless of the data’s actual value.

Next, while ensuring integrity and confidentiality, enclaves are part of user-level applications,
and as such are managed by the operating system. Thus, even though the OS is not allowed to
read their content, it has tools to manage enclaves: The OS can stop and resume enclave execution
at will in order to manage their scheduling and let them run alongside regular applications. The
OS also manages SGX’s virtual to physical memory mapping via dedicated interfaces, without
compromising SGX’s security guarantees.

2
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1.1 Our Contrition

Unfortunately, like any new technology, SGX has some flaws. In this thesis we are trying to identify
the problems it has, and try to fix them. Since deploying fixes for SGX in hardware is usually much
harder than deploying software fixes, we tried to present software workaround to the issues we
identified. At a high level, in this work we found two limitations of Intel SGX, and their potential
to be fixed in software:

• We present a vulnerability in Intel SGX that allows breaking all the security guarantees of SGX.
In particular, unlike previous work which extracted secret information from an SGX enclave by
observing secret-dependent memory access-patterns [100], we show that it is possible to extract
enclave secrets even from a perfect enclave, which does not contain any software vulnerabilities.

• Next, we present a performance limitation related to the SGX memory management mechanism,
and show how to achieve a significant speedup using software techniques only.

This thesis is organized as follows. First, in chapter 3, we present Foreshadow, a microarchitec-
tural side channel attack that breaks SGX’s confidentiality, integrity and trust. First, we show how
an attacker can read the entire memory contents of any victim enclave running on the target ma-
chine. Next, we demonstrate how to leverage this ability to violate the integrity and confidentiality
of SGX’s sealing mechanism, which protects enclaves’ long term storage. Finally, we show how
to recover the machine’s attestation key and breach the SGX trust mechanism, allowing attackers
to masqurade as any victim enclave. We empirically demonstrate our attack on several up-to-date
SGX-enabled machines, including machines updated with countermeasures against previous spec-
ulative execution attacks, such as Spectre and Meltdown [53, 60].

The second result in this thesis will show that running memory-demanding multi-enclave server
applications leads to significant performance degradation. Previous work [71, Eleos] discovered
that the SGX memory management mechanism presents a major bottleneck to SGX execution time.
To address this, Eleos presented a novel Secure User-managed Virtual Memory (SUVM) abstrac-
tion that implements application-level paging inside the enclave. Unfortunately, for the case of
multiple enclaves running on the same physical hardware, the work of [71] does not result in any
performance gains. Addressing this issue, in chapter 4, we present Multi-SUVM, which analyzes
and solves the overhead of hardware paging for multiple enclave environments running on the same
hardware. Analyzing the performance of our solution, we show up to 65% speedup over a naive
SUVM implementation in the multi-enclave case.

1.2 Related work

System support for trusted execution. Intel SGX SDK [8, 20, 34, 61] introduces the OCALL
interface to allow untrusted function calls from enclaves, which force the enclave to exit to perform
such a call. Eleos replaces OCALL with a more efficient exit-less implementation.

The authors of Intel SGX 2 [62, 99] acknowledges the performance overheads of OCALL. How-
ever, they do not consider indirect costs.

Haven [12], Graphene [88] and PANOPLY [84] provide secure execution for legacy applications
inside SGX enclaves without application code modifications, by providing a compatibility layer that
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deals with enclave execution. Our work is complementary, and can be used to improve applications
performance, as we do with Graphene (§ 4.5). Finally, the integration of Eleos adds only a few
hundred lines of code into the TCB.

VC3 [77] uses SGX to achieve confidentiality and integrity as part of the MapReduce frame-
work. Ryoan [35] is a system used to execute enclaves in a sandbox and distributed environment.
Ryoan proposed use cases include health analysis and image processing modules, which like VC3
are both I/O and memory-demanding. Thus, using Eleos with it might be beneficial.

Closest to our work, SCONE [10] leverages SGX to provide isolated execution for Linux con-
tainers [63]. SCONE employs an independently developed technique that is similar to Eleos’s RPC
mechanism. However, the authors do not analyze the costs of exits, as we do in this paper. Fur-
thermore, Eleos enhances the RPC mechanism to reduce LLC pollution by using CAT. Finally, we
extend the scope of exit-less services to virtual memory, and show significant performance benefits
for workloads exceeding the size of PRM.

Asynchronous system calls. The authors of FlexSC [86] observe the need to reduce user/kernel
transitions to optimize the system call performance, proposing asynchronous system call execution
with batching. Eleos’s RPC service is similar. Furthermore, our analysis of LLC pollution and TLB
flushes was inspired by that of FlexSC.

System services for GPUs. This work adapts some of the ideas introduced earlier to provide
system services on GPUs. Specifically, GPUfs [85] and GPUnet[51] are systems for efficient I/O
abstractions for GPUs. Like them, Eleos uses an RPC infrastructure to reduce transition costs.
ActivePointers [81] is a software address translation system for GPUs that provides support for
memory mapped files. Eleos adopts this concept for spointers but extends it by redesigning its
paging system to support secure paging and optimizing it for execution on CPUs.

Virtual machine ballooning. Eleos applies the idea of coordinated memory management among
virtual machines [93] to enclaves. Thus enclaves, like virtual machines, may evict pages according
to their eviction policy. However, unlike VM ballooning, Eleos adds its own trusted swapping
thread, and can directly modify the enclave’s working set.

Distributed shared memory. Shasta [76] is a software based distributed shared memory system,
which supports a shared address space across a cluster. To maintaining coherency in fine-grain
granularity, Shasta instruments load and store instructions to test for memory state validity. Eleos,
adapts this concept into spointers, yet extends it to support full virtual memory management in a
secure fashion.

Exit-less interrupts for optimized I/O in VMs. The concept of exit-less interrupt handling in
Virtual Machines introduced in ELI [26] inspired us to consider techniques for eliminating costly
exits in enclaves. ELI, however, focuses on interrupt handling in the context of optimized I/O
performance, and does not consider avoiding exits due to page faults.

Exploiting Operating System Control. Excluding the OS from the TCB gives potential attackers
powers that do not exist in more traditional attack models. The controlled channel attack [100]
uses the OS’s control over the enclave’s memory mapping to leak information about the enclave’s
operation. Under this attack, the OS protects the enclave pages by manipulating virtual memory
permissions, preventing access. When the enclave attempts to access a protected page, the processor
traps to the OS, which records the access before enabling permission and allowing the enclave to
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continue. The attack can recover high-resolution data, including outlines of JPEG images [100] and
cryptographic keys [83, 97].

In addition to page faults, the operating system can also monitor other effects of page table
access, including whether a page is dirty or has been accessed, and the caching status of the page
table or the translation lookaside buffer [91, 94]. This approach reduces the overhead and side
effects of the controlled channel attack.

Microarchitectural Attacks. Microarchitectural side channel attacks are considered outside the
scope for SGX [41, 42], hence it is not surprising that SGX is vulnerable to such attacks. How-
ever, operating system control gives attackers additional powers when deploying microarchitectural
attacks.

One such power is the ability to interrupt the victim enclave frequently, allowing the attacker to
monitor the cache [65, 66] or the branch predictor unit [21, 58] after almost every victim instruction.
Attackers can also use the operating system control to reduce system activity and the noise it induces
on microarchitectural attacks. For example, the operating system can block interrupts and ensure
that the attacker thread and the enclave execute on the two hyperthreads of the same core [16]. Fur-
thermore, the operating system has access to performance information that is not normally available
to, or is very noisy when used from user processes [16, 27, 58].

Speculative Execution Attacks on Enclaves. Both O’Keeffe et al. [68] and Chen et al. [19]
demonstrate that the Spectre attack [53] works on SGX enclaves. Both attacks are demonstrated
only against specially crafted enclaves, and as such are more at the proof-of-concept stage rather
than being practical attacks.

Both attacks rely on executing vulnerable code within the victim enclave. Our attack, in con-
trast, does not require any specific code in the victim enclave and can extract all of the memory
contents of the enclave without executing any of the enclave code. While existing work shows vul-
nerable gadgets exist in the SGX SDK [68], these attacks can be mitigated by patching the SDK and
removing these gadgets. Our attack does not rely on vulnerabilities in SDK.

Denial of Service Attacks. The use of encrypted and authenticated memory protects enclaves from
subversion via attacks, such as Rowhammer [52], that modify the contents of memory. However, the
pitfall of this protection is that Rowhammer attacks can now be used to mount a denial-of-service
attack on the entire machine, as the unauthorized memory changes lock the processor, requiring a
power cycle for execution to resume [30, 49].

Other Attacks on Enclaves. SGX offers only limited protection to vulnerabilities in the code
running within enclaves, which can compromise enclave security. One example is Edger8r [46],
a timing leakage in the Intel SGX SDK that allows attackers to retrieve some contents of the at-
tacked enclave. Lee et al. [56] show that memory corruption vulnerabilities in SGX enclaves can
be exploited and explain how to mount Return Oriented Programming [80] attacks on such vulner-
abilities. Finally, AyncShock [96] shows how to exploit synchronization bugs to hijack the enclave
control flow.

Attacks from Enclaves. Because the contents of enclaves cannot be observed by the operating
system, malicious code may run undetectably in enclaves. SGX provides some protections against
malicious enclaves. In particular, enclaves execute in user space, and thus cannot invoke privileged
instructions. Furthermore, several non-privileged instructions are disabled in enclaves, for example,
IN or OUT, which perform input/output operations and SMSW, which may leak kernel information.

5
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However, this protection does not extend to microarchitectural attacks. Consequently, enclaves
can leak information through cache attacks [78] and modify the contents of memory using the
Rowhammer attack [30].

Defenses. Several mitigation techniques for SGX attacks have been proposed. T-SGX [82] uses
a Transactional Synchronization Extensions transaction to catch interrupts, so the enclave can iden-
tify the page faults used in the controlled channel attack [100] and the timer interrupts used in other
attacks [21, 58, 65]. Shinde et al. [83] defend against the controlled channel attack by forcing a
deterministic access pattern to enclave pages. HyperRace [18] aims to protect against attacks that
rely on hyperthreading, such as Brasser et al. [16]. HyperRace uses a data race to implement a
co-location test with which an enclave thread verifies that it is co-located on the same core as a
dedicated shadow thread, thereby ensuring that no attacker concurrently executes on the same core.
Similar techniques are used in Varys[69]. SGX-Shield [79] randomizes enclaves’ address space lay-
out to protect against memory-based attacks, including the controlled channel attack. DR.SGX [15]
protects from some cache-based attacks using fine-grained randomization of enclaves’ data loca-
tions. SGXBounds [55] provides memory safety for SGX enclaves by tagging pointers with bounds
information.

6
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Chapter 2

Background

Trusted Execution Environments (TEEs) are a set of architectural extensions, recently introduced in
commodity processors, which collectively provide strong security guarantees to software running
in the presence of powerful adversaries. TEEs’ promise to allow secure execution on adversary-
controlled machines has spawned many new applications [11, 54, 75, 89, 103, 105], both in
academia [10, 12, 13, 35, 57, 77, 87, 91, 100] and industry [2, 9, 22, 39]. Whereas several TEEs
have been proposed (e.g., ARM’s TrustZone [7] or AMD’s Secure Encrypted Virtualization [1]),
the currently prevailing TEE implementation is Intel’s Secure Guard eXtensions (SGX) [8, 37].

To support private and secure code execution, SGX provides isolated execution environments,
called enclaves, which offer confidentiality and integrity guarantees to programs running inside
them. While SGX’s security properties strongly rely on the processor’s hardware implementation,
SGX removes all other system components (such as the memory hardware, the firmware, and the
operating system) from the Trusted Computing Base (TCB). In particular, SGX ensures that the
processor and memory states of an enclave are only accessible to the code running inside it and that
they remain out of reach to all other enclaves and software, running at any privilege level, including
a potentially malicious operating system (OS), and/or hypervisor. At a high level, SGX achieves
these strong security guarantees by encrypting enclave memory and protecting it with a secure
authentication code, making the associated cryptographic keys inaccessible to software. Finally,
SGX provides a remote attestation mechanism, which allows enclaves to prove to remote parties
that they have been correctly initialized on a genuine (hence, presumed secure) Intel processor.

Notwithstanding its strong security guarantees, SGX does not protect against microarchitec-
tural side channel attacks. Such side channel attacks exploit subtle timing variations resulting from
contention on CPU microarchitectural resources to extract otherwise-unavailable secret information.
Since their introduction over a decade ago [14, 72, 73, 90], microarchitectural attacks have been used
to break numerous cryptographic implementations [25, 47, 102], track user behaviors [28, 59, 70],
and create covert channels [29, 95]. Moreover, recent works combine microarchitectural attacks
with speculative execution [38, 53, 60], allowing the attacker to read the entire address space of
victim processes or of the operating system.

In terms of protection against side channel attacks, Intel acknowledges that “SGX does not de-
fend against this adversary” [42, Page 115] arguing that “preventing side channel attacks is a matter
for the enclave developer” [41]. Indeed, starting with the controlled channel attack [100], numer-
ous works have demonstrated side channel attacks on or from SGX enclaves (See Section 1.2).
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Crucially, all the previously published attacks on SGX exploit existing side channel vulnerabili-
ties [100], coding bugs [55], or speculative execution gadgets [19, 68] in enclaves’ code to leak
sensitive data.

2.1 Memory Encryption

To protect enclaves’ data from the operating system, the firmware of the machine reserves a range
of memory called the Processor Reserved Memory (PRM), which contains a region encrypted using
the Intel Memory Encryption Engine (MEE) [31, 32], as well as metadata used for SGX and for
MEE.

The main aim of MEE is to protect against an adversary that has physical access to the memory
of the host machine. To provide confidentiality of the data, MEE encrypts the data in the PRM. To
protect the data integrity, MEE maintains a Merkle Tree [64] of stateful Message Authentication
Codes (MACs), which ensure unauthorized modifications, including rollbacks, of the memory are
detected. MEE operates between the LLC and the system’s memory. Cache lines are encrypted
when written to memory and decrypted and validated when read from memory.

2.2 EPC and PRM

An enclave may access an isolated trusted memory space called the enclave page cache, or EPC,
which is accessible only from that enclave. Physical memory that stores the EPC contents is limited
to the size of the PRM (128MB today). Therefore, EPC introduces an extra level of virtual memory
with its own demand paging system. Under PRM pressure, EPC pages are securely evicted to
untrusted memory and paged in on-demand by the SGX driver in response to EPC page faults.

2.3 Enclave Creation

SGX extends the x86 64 instruction set with a variety of instructions for the operating system, user
code, and hypervisors to manage enclaves. Launching an enclave requires a three-step sequence.
First, the operating system populates initial data structures that describe the enclave and assigns a
contiguous range of virtual addresses, called ELRANGE, to the new enclave. The contents of the
ELRANGE is private to the enclave and can only be accessed by code running within the enclave.
Next, the operating system adds the initial (non-secret) code and data to the enclave by using the
EADD SGX instruction. Finally, the enclave is initialized; the operating system may not add more
code or data after initialization.

For each enclave, SGX keeps an enclave-identity comprised of the enclave developer’s identi-
fier and a measurement representing the enclave’s initial state. The developer’s identifier, referred
as MRSIGNER in SGX literature, is a cryptographic hash of the public RSA key the enclave devel-
oper used to sign the enclave’s measurement. The enclave measurement, representing the enclave’s
initial state, is a cryptographic hash of those parts of the enclave’s contents (code and data) that its
developer chose to include in the measurement. The SDK implementation includes in the measure-
ment all contents added to the enclave via EADD. Following the SGX nomenclature, we refer to this
measurement as MRENCLAVE.
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Figure 2.1: SGX’s memory access flow, as described in [61].

2.4 Memory Management

To protect the contents of the ELRANGE, pages within this range must map to the PRM. More
specifically, part of the PRM is used for the Enclave Page Cache (EPC), in which enclaves’ pages
are stored. Each page within the ELRANGE of an enclave can be either loaded in the EPC, where the
enclave can use it, or (securely) stored outside the EPC, where the OS must load it into the enclave
before it may be accessed. The operating system is given the primitives required for managing the
EPC, without being able to observe or to modify the contents of the EPC pages. These mechanisms
enable the operating system to implement a secure paging facility for enclaves whose footprint
exceeds the available capacity of the EPC.

The ENCLS instruction supports several functions for loading and unloading pages to and from
the EPC and for managing the metadata associated with these pages. Specifically, the EWB leaf
instruction encrypts the contents of an EPC page and copies the encrypted contents to the unpro-
tected memory. EWB also maintains (in the EPC) the required metadata that identifies the page’s
version and virtual address in ELRANGE, to protect the evicted page’s contents. Similarly, the
ELDU instruction loads the encrypted contents of an EPC page from the unprotected memory.

Because SGX enclaves execute within the virtual address space of a process, the translation of
enclave addresses to physical addresses must be trusted. However, the operating system controls the
mapping of virtual to physical addresses and can change this mapping at will. Instead of ensuring the
correctness of the operating system’s page table, SGX maintains an internal data structure called the
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Enclave Page Cache Map (EPCM), which tracks the mapping and the identities of frames within the
EPC. The EPCM provides the reverse mapping of the physical-to-virtual address mapping encoded
in the page tables.

The purpose of the EPCM is to protect against attempts to bypass the SGX protection by map-
ping an EPC page at a different virtual address. This protection is achieved by adding several
validation tests following a virtual to physical address translation. Figure 2.1 shows a flow chart
of the validation process. First (Step 1©), the processor checks whether the access is from within
an enclave. Non-enclave code is blocked from any access to the PRM by providing abort page
semantics for such accesses. That is, reads from the PRM return an all-one data (0xFF) and writes
to the PRM are ignored.

Code executing within an enclave can access both the unprotected (normal) memory and its own
ELRANGE. Thus, in Step 2©, the processor checks that the accessed virtual address is within the
ELRANGE of the accessing enclave. Failing this test, the processor reverts to the default behavior,
i.e. normal access for user memory and abort page semantics for PRM access.

Finally, in Step 3©, the processor verifies that the data in the EPCM matches the attempted
access. If the verification fails, the processor issues a page fault to abort the access.

10
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Chapter 3

FORESHADOW: Extracting the Keys to
the Intel SGX Kingdom with Transient
Out-of-Order Execution

3.1 Overview

Even though SGX has lots of benefits such as little performance overhead, support of existing x86
code, easy integration with existing OSes and a strong attacker threat model, little is known, about
the side channel security of SGX enclaves that do not contain existing side channel vulnerabilities
or other coding bugs. Thus, in this thesis, we ask:

Can an adversary extract secret data from an enclave’s address space when the code running in
that enclave does not itself have any security vulnerabilities? If so, can this be done cheaply and
unobtrusively?

Next, we observe that whereas SGX’s confidentiality guarantees in the presence of side channels
have been studied before [58, 91, 96, 100], SGX’s integrity guarantees in the presence side channels
have received much less research attention. Thus, we ask:

What are the implications of side channel attacks on the SGX integrity guarantees? Can an adver-
sary make an enclave operate on corrupted input data or corrupted state?

Finally, given the importance of SGX remote attestation [50] in establishing trust in the SGX ecosys-
tem, we finally ask:

Can a side channel adversary erode the trust in SGX remote attestation? If so, what will it take to
mount such an attack?

3.1.1 Our Contribution

We answer all three questions in the affirmative. We answer the first question by presenting several
new attacks that compromise SGX’s confidentiality guarantees. We then use our attacks on SGX’s
confidentiality properties to break SGX’s integrity guarantees, thereby answering the second ques-
tion. Finally, we use these attacks to recover the machine’s private attestation keys, thereby breaking
SGX’s attestation protocol and answering the third question. As such, until mitigated were out, our
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results fully compromised the basis of trust in the SGX ecosystem, both in terms of confidentiality
and integrity.

Breaking SGX’s Confidentiality. Our first attack exploits the speculative execution features
present in all SGX-enabled Intel CPUs to read the entire address space of victim enclaves. Cru-
cially, unlike previous Spectre-style speculative execution attacks on SGX [19, 67], our attack
does not require any code gadget or any other form of cooperation from the victim enclave. In
fact, our attack reads all the secrets of the victim enclave without requiring that enclave to exe-
cute any instruction. In particular, our attack bypasses all currently proposed side-channel miti-
gations for SGX [18, 69, 79, 82], as well as proposed countermeasures for speculative execution
attacks [38, 40].

At a high level, an attacker can maliciously retrieve memory contents of the victim enclave by
remapping the victim memory into the address space of the attacker enclave, which allows bypassing
SGX’s default enclave-isolation mechanism of abort page semantics. The attacker then prefetches
the victim’s data into the L1 cache without the victim’s involvement by leveraging the cache be-
havior of SGX paging instructions, thus dramatically improving the attack effectiveness. Finally,
the attacker uses speculative execution to perform segmentation-fault-free access to the victim’s
memory. We refer the reader to Section 3.3 for additional details.

Breaking the Integrity of Sealed Data. Going beyond attacks on the SGX confidentiality proper-
ties, we show the first attack that compromises SGX’s long-term storage integrity guarantees. More
specifically, in addition to secure computation, SGX also aims to provide private and authenticated
long-term storage, which is implemented via a special sealing Application Programming Interface
(API) [8]. This storage mechanism allows enclaves to encrypt and verify data stored by the (un-
trusted) operating system.

As we show in Section 3.4, we can use our attack on SGX’s confidentiality to extract the sealing
key from a victim enclave that uses the SGX sealing mechanism. We note that extracting this key
from the address space of an enclave is challenging as the SGX Software Development Kit (SDK)
implementation of the sealing API [36] zeros out the sealing key from memory immediately after
using it, thereby requiring our attack to intercept the key before it is destroyed. After recovering the
sealing key, we use it to unseal and read the sealed information, then modify and reseal it. As SGX
provides no means to detect such a change, the victim might now operate on data corrupted by the
attacker.

Breaking Remote Attestation. Finally, we turn our attention to SGX’s remote attestation mecha-
nism, which allows an enclave to prove to a remote party that it has been initialized correctly and is
executing on a genuine (presumably secure) Intel processor.

As we show in Section 3.5, we can mount the aforementioned attacks on the SGX Quoting En-
clave, dump its entire address space, and retrieve its sealing key. Besides being the first documented
attack on a production enclave, this attack is particularity devastating as we use the sealing key to
unseal the persistent storage of the Quoting Enclave, which contains the machine’s private attes-
tation key. With this key in hand, we can construct malicious SGX simulators that pass the entire
attestation process, masquerading as enclaves that are allegedly running on genuine Intel processors
with the SGX security guarantees. As the simulated enclaves do not offer any security guarantees,
this attack undermines the trustworthiness of SGX’s attestation mechanism.

Exploiting SGX’s Privacy Guarantees. We note that the SGX attestation protocol is designed

12

Technion - Computer Science Department - M.Sc. Thesis  MSC-2019-02 - 2019



with privacy in mind, and does not reveal the identity of the attesting machine to the remote verify-
ing party. As such, the remote party has no way of telling which keys were used for the attestation.
Consequently, until revoked by Intel, even a single leaked attestation key can be used for all ma-
licious simulators, without the remote parties being able to distinguish them from genuine SGX
machines. Thus the leak of even a single key jeopardizes the trustworthiness of the entire SGX
ecosystem.

Brittleness of the SGX Ecosystem. To the best of our knowledge, our attack is the first direct
attack on the confidentiality of the SGX enclaves that makes no assumptions about code running in
a victim enclave. By leveraging this attack, the adversary may break the integrity of the SGX long-
term storage and the trustworthiness of the remote attestation protocol. As such, our work highlights
the brittleness of the current SGX design, because a flaw in confidentiality leads to a cascading set
of compromises that undermine the root of trust in the ecosystem.

3.1.2 Targeted Hardware and Current Status

Experimental Setup. We believe that our attacks are applicable to any presently shipping SGX-
enabled Intel CPU. We conducted our experiments on a NUC7i7BNH machine equipped with an
Intel Kaby Lake Core i7-7567U processor featuring 2 physical cores and 64 KB of 8-way set as-
sociative L1 data cache. The machine was running a fully updated Ubuntu server 16.04, which
includes microcode and operating system countermeasures against previous speculative execution
attacks (e.g., Spectre and Meltdown). We further verified that we can read enclave contents on
machines featuring Core i7-6770HQ, i7-6700K, i7-6700, i7-6500U.

3.1.3 Threat Model

The Attacker Controls the Operating System. We assume that the attacker controls the operat-
ing system and, in particular, can install kernel modules or otherwise execute code with supervisor
(ring-0) privileges. The attacker is therefore capable of controlling the virtual-to-physical memory
mapping of processes and execute SGX instructions. We note that while we assume a very strong
adversary, such a malicious attacker is well within the SGX threat model. Specifically, an SGX
enclave is designed to be “protected even when the BIOS, VMM, OS, and drivers are compro-
mised” [44].

No Physical Access. While the attacker requires supervisor privileges, the attacks presented in this
paper can be conducted remotely. We do not assume any physical access to the attacked machine,
including its memory, memory bus, motherboard, etc.

The Attacker Can Observe When a Secret is in Memory. We assume the attacker is capable
of launching the victim enclave, and estimating when the enclave contains secrets. In a simple
scenario, the observation is made by the attacker invoking specific enclave functions that generate a
secret locally or request a secret from an external party. In section 3.4, we explain how an attacker
can pause an enclave to retrieve a secret in memory before it is erased.

We stress that the interaction with the victim enclave is made for observing when the secret is
in memory. No interaction with the victim enclave is required for extracting the secret. At any time,
our attack allows the entire victim memory space to be extracted.
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No Assumptions on the Victim’s Code. Our attack makes no assumptions on the victim’s code
or on its layout in memory. Unlike Spectre [38, 53], our attack does not require any special code
gadgets [68]. Even if the code is encrypted or Address Space Layout Randomization (ASLR) is
used [79], our attack is capable of reading the contents of the enclave after it is decrypted and after
ASLR code placement randomization is completed.

3.2 Background

3.2.1 The Flush+Reload Attack

Flush+Reload [33, 101] is a cache-based microarchitectural attack technique that detects access to
a shared memory location. The technique consists of two main operations. The flush operation
evicts the contents of a monitored memory location from the cache. Typically, this is done using a
dedicated instruction, such as the clflush instruction on x86 architecture. The reload operation
then measures the time it takes to access the monitored location. Based on this time, it determines
whether the contents of the monitored location was cached prior to its execution.

In a typical attack scenario, an attacker flushes one or more monitored locations. It then ei-
ther executes an operation it wants to analyze or waits until it is naturally executed by the vic-
tim. The attacker then reloads the monitored locations, while recording the amount of time re-
quired to perform the reload. As the analyzed operation accesses (and thereby caches) some
of the monitored locations but not others, the attacker is then able to learn information about
the memory access pattern of the analyzed operation. Finally, as memory access patterns of-
ten reveal information about the inputs of the analyzed operation, the attacker is often capable
of completely recovering these inputs. Flush+Reload has been extensively used for side channel
attacks [6, 23, 24, 28, 48, 53, 60, 74, 101, 104].

3.2.2 Speculative Execution

To improve performance and utilization, modern processors execute multiple instructions concur-
rently. In a nutshell, the processor tries to predict the future instruction stream. By executing
multiple instructions from the predicted stream in parallel, the processor is able, for example, to
use the time it waits for data to arrive from memory to execute future instructions. For linear code,
i.e. code that does not branch, prediction of the future instruction stream is straightforward. For
non-linear code, processors employ multiple strategies for predicting the outcome of branches.

Execution of future instructions is inherently speculative. The actual instruction stream may
differ from the predicted one. Two scenarios that may result in prediction errors are branch mispre-
diction, where the branch predictor incorrectly guesses the outcome of a branch, and the occurrence
of traps that interrupt the instruction stream. To maintain correct program behavior, the processor
does not commit the results of speculatively executed instructions. Instead, completed instructions
are kept in a reorder buffer until all preceding instructions have successfully completed. When
the processor discovers it erroneously speculated an instruction stream, these instructions are aban-
doned and the results of their execution do not affect the state of the program.
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3.2.3 Spectre and Meltdown

When the CPU abandons speculatively executed instructions, it does not fully revert the side-effects
these instructions have on its microarchitectural state. Spectre and Meltdown [53, 60] exploit these
side-effects to leak information across protection domains. The attacks cause the CPU to specula-
tively execute a gadget that implements the transmitting side of a covert channel, sending informa-
tion that would otherwise be unavailable to the receiver.

More specifically, the Meltdown attack exploits a race condition in vulnerable processors that
allows user processes to read kernel data. Specifically, when a user program attempts to read from
a kernel address, the processor validates the access while at the same time it speculatively executes
the instructions that follow the kernel memory read. By placing a gadget that sends the contents of
the kernel memory address through a covert channel, an attacker can retrieve the contents of that
address.

Similarly, the Spectre attack leaks memory using a speculatively executed gadget, however in-
stead of bypassing memory protection, it exploits branch misprediction. More specifically, the
attacker first trains the branch predictor to predict a desired outcome of a branch, resulting in the
execution of the gadget. It then executes the branch with malicious data that produces a different
outcome. Due to the prior training, the new outcome of the branch is mispredicted. The gadget
is speculatively executed with the malicious data, leaking information through a microarchitectural
channel, which the attacker observes to retrieve the information.

3.3 Reading Enclave Data

In this section, we describe our first attack, which allows us to read data located within the address
space of some victim SGX enclave. At a high level, our attack is constructed to coerce Steps 1©,
2©, and 3© in Figure 2.1 to result in a page fault due to a failure of verification of an EPCM test. We

then use a variant of the Meltdown attack to subvert the page fault and read the victim’s data.
Before describing each of the components in our attack we first explain how we establish a

cache-based covert channel, which is used by the speculative execution component of our attack.

3.3.1 Establishing a Cache-Based Covert Channel

Similar to prior work [53, 67], we leverage the Flush+Reload covert channel. The channel consists
of three operations, abstracted as functions in Figure 3.1.

Channel Initialization. The prepare function is used to initialize the covert channel for sending
a byte, encoding the byte’s value via the cache state of a corresponding element of probeArray.
As such, to initialize the channel, the prepare function flushes all the elements of probeArray
from the CPU’s cache. To simplify the attack’s description, we assume that probeArray is a
global shared buffer, which is accessible to all the subroutines used by our attack. We, therefore,
omit its passing via function parameters and access it as a shared global variable.

Transmitting a Byte. The send function takes a one byte argument data, and transmits it via
the covert channel by accessing a corresponding element from probeArray (Line 7), thereby
bringing it to the CPU’s cache. As we can only distinguish accesses at a cache-line granularity,
we multiply (data) by 256 before accessing probeArray. With a cache-line size of 64 bytes,
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1 prepare() {
2 for (i=0; i < 65536; i++)
3 flush(probeArray[i]);
4 }
5

6 send(data) {
7 t = probeArray[data * 256];
8 }
9

10 recieve() {
11 for (i = 0; i < 256; i++) {
12 // mix guess to avoid prefetching probeArray
13 guess = ((i * 167) + 13) % 256;
14 // compute address to probe
15 addr = &probeArray[guess*256];
16 t1 = rdtscp(); // read timer
17 temp = *addr; // access probing array
18 t2 = rdtscp(); // read timer
19 if (t2-t1 <= CACHE_HIT_THRESHOLD){
20 results[guess]=1;
21 } else results[guess]=0;
22 }
23 return results;
24 }

Figure 3.1: Pseudocode of the Flush+Reload covert channel.

spreading indices by multiples of 256 ensures that different values of data index to different cache
lines. We find that using lower multipliers increases noise level due to prefetcher activity.

Receiving a Byte. The receive function reads the channel and returns a boolean array indicating
possible values of the transmitted byte. To receive the data transmitted by send, receive reloads
each of the addresses that send might have accessed, while measuring the time required to per-
form the load (Lines 15-18). If the required time is below an (empirically set) cache-hit threshold,
this indicates that the send function might have transmitted the value of guess via the cache-
based covert channel. That is, the send function accessed probeArray[guess*256], thereby
bringing it into the CPU’s cache, accelerating the subsequent probe access.

We note here that while the Flush+Reload channel is usually clean, some measurement errors
remain possible, typically due to unrelated system activity. Consequently, instead of returning a
single guess for the transmitted data, receive returns a vector of results that indicates which
values where possibly transmitted by send. In Section 3.3.5 we show how to avoid these errors
and correctly recover the transmitted data. Finally, to avoid the CPU’s prefetcher modifying the
cache state, receive does not access the indices of probeArray sequentially and follows the
approach of previous works [53, 67] by applying a simple linear permutation to the order of accesses
(Line 13).
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3.3.2 The Malicious Hosting Process

The attacker launches the victim enclave in a process and identifies the virtual address range
(ELRANGE) of the victim enclave inside the process’s address space. The range can be located
either via a malicious driver or by inspecting the contents of /proc/pid/maps. At this point,
a naive attacker might attempt to read directly the enclave address space. However, the virtual
addresses of the victim enclave are mapped to physical addresses residing in the EPC, which is part
of the PRM. Consequently, as Figure 2.1 shows, such access would result in abort page semantics,
i.e., the read returns a value with all bits set, regardless of the actual memory content. Alternatively,
the attacker may attempt to read the enclave’s data by mounting a speculative execution attack (e.g.,
Meltdown). However, we found that such attempts also result in abort page semantics.

3.3.3 The Attacker Enclave

To cause a page fault, we first need to pass Step 1© of the memory access flow (Figure 2.1). We
achieve this by spawning a malicious attacker enclave, which performs the read access. We note
that there is no need for the attacker enclave to be vetted by Intel, as we can execute the attack
enclave in SGX debug mode. However, a naive use of an enclave is not sufficient to coerce a
page fault, because the ELRANGE of the attack enclave is different than that of the victim enclave.
Consequently, the validation in Step 2© of Figure 2.1 fails and the access still results in abort page
semantics.

3.3.4 Malicious SGX Driver

To overcome the ELRANGE check deeming the victim’s memory address outside of the attacker
enclave (Step 2© in Figure 2.1), we use a malicious SGX driver that introduces an incorrect and
malicious mapping from the virtual address space of the attacker’s enclave to the physical EPC
page of the victim enclave (see Figure 3.2). With the malicious mapping in place, the attacker
enclave can pass the ELRANGE check when attempting to read EPC pages located in physical
memory and belonging to the victim enclave.

However, as mentioned in Section 2.4, SGX prevents operating systems from maliciously ma-
nipulating the virtual to physical mapping of enclave pages by keeping the reverse mapping inside
the EPCM (Figure 3.2). The EPCM contains the reverse mapping from the physical addresses in
the EPC to the virtual addresses in the enclave’s ELRANGE. When memory is accessed from in-
side an enclave, the CPU checks the OS-controlled page-table against the EPCM to verify that the
OS-managed virtual to physical mapping matches the page’s EPCM entry. As shown in Figure 2.1,
memory is only accessed in case both mappings match, and an EPCM page fault occurs if a mis-
match is detected.

We observe that the EPCM is indexed according to the physical address of the EPC page, mean-
ing that the OS-managed virtual to physical mapping can be verified only after the virtual to physical
address translation completes. We conjecture that Intel implemented the memory access in paral-
lel to the EPCM verification with both operations performed after resolving the virtual to physical
mapping. We now show how to exploit this fact to bypass the EPCM page fault, thereby recovering
data from the victim enclave.
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Attacker Enclave ELRANGE

Validation Reverse-Mapping stored in EPCM

Victim Enclave ELRANGE

Attacker Enclave ELRANGE

Malicious Mapping in OS Page Table
Victim Enclave ELRANGE

EPC pages

Figure 3.2: Malicious mapping. At creation time, the OS assigns the enclave a contiguous virtual
address range (ELRANGE). The Virtual Address of an enclave page may be assigned a physical
address of a page in the EPC. In SGX-ray, the attacker maps a virtual page within its own virtual
range to the victim’s physical EPC page.

3.3.5 Reading Cached Enclave Data

We begin our attack by assuming that the address space of the victim enclave contains some secret
that the attacker wants to read and that this secret happens to reside in the CPU’s L1 cache. Later,
in Section 3.3.7, we show how to remove this assumption, allowing the attacker to read the entire
address space of the victim enclave. Our attack thus proceeds as follows.

A Cross-Enclave Speculative Execution Attack. We begin our attack by setting up a malicious
hosting process (Section 3.3.2) which initializes both the victim enclave and the attacker enclave
(Section 3.3.3). The process then uses the malicious driver to set up a malicious mapping of the
victim enclave’s page that contains the data we want to read (Section 3.3.4). Finally, as explained
above, in this section we assume that the data that the attacker wants to read resides in the CPU’s
L1 cache.

Next, our attacker enclave exploits the CPU’s branch predictor in order to mount a speculative
execution attack on the victim enclave. Unlike Spectre attacks [53], which exploit the branch pre-
dictor to read (and subsequently leak) data from within the same address space, our attack exploits
the branch predictor to leak information across enclave boundaries while eluding the page fault is-
sued for the illegal access. At a high level, our speculative execution attack consists of three phases,
which we now describe.

Step 1: Branch Predictor Training. Consider the pseudocode presented in Figure 3.3, which
is executed by the attacker enclave using some dummyValue that is provided by the malicious
hosting process. During the first five iterations of the for loop in line 3, the selected address
is dummyAddress (which is the address of the variable dummyValue) and it is the case that
the branch in Line 7 evaluates to true. Next, as it is the case that selectedAddress equals
dummyAddress, Lines 9 and 12 actually send the attacker-provided dummyValue through the
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1 speculative_read(dummyValue, addressToRead ){
2 dummyAddress = &dummyValue;
3 for (i = 5; i >= 0; i--) {
4 selectedAddress =
5 ct_select(i, dummyAddress, addressToRead);
6 flush(&dummyAddress);
7 if (selectedAddress == dummyAddress){
8 // read value from selected address
9 value = *selectedAddress;
10 // send value via a Flush+Reload covert channel
11 // using the code in Listing 1
12 send(value);
13 }
14 }
15 }

Figure 3.3: Pseudo code of the attacker enclave. The function ct select outputs addressToRead
when i = 0 and dummyAddress otherwise.

Flush+Reload cache covert channel. We note that while this does not provide any additional infor-
mation to the attacker, it does train the CPU’s branch predictor that the branch in line 7 typically
evaluates to true.

Step 2: Attack Phase. Consider the final iteration (i = 0) of the loop in line 3. As i = 0, the
selected address in line 5 is the address from which to read in the victim enclave, as provided by
the hosting process. Moreover, as line 6 flushes the value of dummyAddress, it is impossible to
evaluate the branch in line 7 until dummyAddress is fetched from memory. Rather than waiting,
the CPU consults the branch predictor and speculatively executes the branch in line 7, predicting
the condition to be true. Next, as selectedAddress equals addressToRead (since i = 0),
both values actually point (via the malicious mapping described in Section 3.3.4) into a physical
page belonging to the victim enclave. As the data located in addressToRead already resides
in the L1 cache, the CPU proceeds to speculatively execute line 9, setting value to be the value
located in addressToRead. Finally, while dummyAddress is still fetched from memory, the
CPU also proceeds to speculatively execute line 12, thereby leaking value through a cache-based
Flush+Reload covert channel.

Step 3: Fault Suppression. We note that executing line 9 when i = 0 actually performs a memory
access to addressToRead, which points (via the malicious memory mapping) to a physical page
of the victim enclave. Next, as discussed in Section 3.3.4, SGX holds a redundant copy of relevant
page table entries in the EPCM, to verify the virtual to physical mapping, as managed by the (poten-
tially malicious) OS. Thus, as shown in Figure 2.1, executing line 9 for the case of i = 0 where the
EPCM does not match the page table entry should have resulted in an EPCM page fault. However,
recall that our attack actually executes line 9 speculatively, while waiting for dummyAddress to
arrive from memory (after being flushed in line 6). When the value of dummyAddress eventually
does arrive from memory, the CPU realizes the branch in line 7 was mispredicted, for the case of
i = 0, and rolls back the execution of Lines 9—12 without emitting an EPCM page fault. However,
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as the cache state is not rolled back, the host process can receive the value obtained from the victim
enclave, sent through the cache-based covert channel.

Relation to Meltdown and Spectre. Our attack is, in fact, a hybrid between the techniques pro-
posed in the Spectre [53] and Meltdown [60] papers. More specifically, it uses a technique similar
to Meltdown where the attacker abuses speculative execution to dereference a pointer to a privileged
address space, and subsequently leaking a result through a cache-based side channel. On the other
hand, our attack also uses the fault suppression technique from Spectre, as it mistrains the CPU’s
branch predictor regarding line 7 of Figure 3.3. While such a combination was theoretically consid-
ered in the Meltdown paper [60], to the best of our knowledge, this paper is the first to provide an
explicit implementation and empirical evaluation of this technique.

3.3.6 Recovering the Leaked Data

So far we have focused on describing how our attack reads data from the victim enclave and trans-
mits it using a cache-based covert channel. In this section, we focus on describing the receiving side
of our attack, which recovers the data of the victim enclave from the cache-based covert channel.
First, we notice that the code in Figure 3.3 actually transmits two values using the Flush+Reload
based covert channel. Indeed, during the first five iterations of the loop in line 3 of Figure 3.3, the
code sends the value of dummyValue (as provided by the attacker). Next, during the final itera-
tion (i = 0), the code in Figure 3.3 sends the value located in addressToRead. Thus, to learn
the value located in addressToRead, the attacker must somehow distinguish the transmission of
dummyValue from the transmission of other values (presumably obtained during the last iteration
of the loop in line 3). The problem is further compounded by the existence of sporadic channel
noise that sometimes corrupts some of the transmissions.

At a high level, we solve both issues using an approach similar to that of [53]. That is, we
transmit the value located in addressToRead multiple times, each time providing a different
dummyValue to be transmitted along with it. We then aggregate the results across all the multiple
transmission attempts, returning the most common value as the value located in addressToRead.
As the correct value located in addressToRead remains the same while dummyValue is con-
stantly changed, we expect that the most common value transmitted via the cache-based covert
channel will be the value located in addressToRead.

More specifically, after creating the incorrect memory mapping between the attacker’s enclave
and the victim enclave (as described in Section 3.3.4), the attacker proceeds to execute the pseu-
docode presented in Figure 3.4, setting addressToRead to be a virtual address mapped to the
victim enclave (via the incorrect mapping). At a high level, the pseudocode presented in Figure 3.4
performs the following for each try index i = maxTries, · · · , 1.

• Step 1: Preparing the Covert Channel. The attacker starts every attempt to read the data of the
victim enclave by preparing a cache-based covert channel. This is achieved in line 6 of Figure 3.4
by calling the prepare() function of Figure 3.1.

• Step 2: Leaking the Victim’s Memory via Speculative Execution. The attacker then mounts
a speculative execution attack on the victim’s enclave by invoking (line 11) the code presented in
Figure 3.3, supplying it with addressToRead and using the try index i as the dummy value.

• Step 3: Receiving Data via the Covert Channel. After mounting the speculative execution
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1 read_value(addressToRead, maxTries){
2 int byteScores[256];
3 for (i = maxTries; i > 0; i = i - 1){
4 // prepare a cache-based coveret channel
5 // using the code in Listing 1
6 prepare();
7 dummyValue = i % 256;
8 // read the value from the victim enclave and
9 // send it via the cache-based coveret channel
10 // using the code in Listing 2
11 speculative_read(dummyValue, probingArray,

addressToRead)
12 //receive scores for each possible value sent
13 //via the cache-based coveret channel
14 //using the code in Listing 1
15 results = receive()
16 //aggrage the scores across many tries
17 for (j = 0; j < 256; j++){
18 byteScores[i] = byteScores[i] + results[i];
19 }
20 }
21 // return the byte value with the highest score:
22 return argmax(byteScores);
23 }

Figure 3.4: Pseudocode of reading a single byte.

attack, the attacker calls the receive function (line 15) of the cache-based covert channel to receive
the data transmitted during the speculative execution attack. As the cache-based covert channel
has been prepared, we expect the receive function (line 15) to return high scores for only two
specific values: i % 256 (which is used as dummyValue and sent during the branch predictor
training phase in Section 3.3.5) and the value located at addressToRead (which is sent during
the attack phase in Section 3.3.5). The attacker then sums the scores for each value over all tries
into the byteScores buffer, where byteScores[j] corresponds to the score of a j-valued
byte.

Recovering the Byte’s Value. With the above steps performed for each try index i =

maxTries, · · · , 1, the attacker has collected statistics for each try index about which values were
received via the covert channel. As mentioned above, for every try index i = maxTries, · · · , 1
we increase the score of bytesScores[i] and bytesScores[value] where value is
the data located at addressToRead. Thus, after performing the above steps for all i =

maxTries, · · · , 1, we expect that bytesScores[value] will equal maxTries while all other
values in bytesScores are significantly lower. Thus, returning argmax(byteScores) suc-
cessfully recovers value (line 22 of Figure 3.4).
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3.3.7 Reading Uncached Enclave Data

The attack described thus far explicitly assumes that that the value located in addressToRead

is also present in the L1 cache. We now describe a method to remove this assumption, allowing
the attacker to read any data located inside the victim’s virtual memory, including data that is never
accessed by the victim enclave.

Managing the Enclave Page Cache (EPC). Although SGX assumes an untrusted OS, SGX nev-
ertheless does rely on the host’s operating system for managing the limited space allocated for the
EPC in the machine’s physical memory. As explained in Section 2.4, the operating system uses the
EWB and ELDU leaf instructions to securely copy enclave pages out of and back into the EPC. We
observe that while decrypting and verifying an encrypted enclave page, the ELDU instruction loads
the page’s contents into the CPU’s L1 cache. Crucially, ELDU never evicts the page from the L1
cache, leaving the page’s contents cached after the instruction terminates.

Exploiting ELDU. Thus, our attack performs the following. Going over the pages of the victim
enclave, the malicious SGX driver described in Section 3.3.4 first uses EWB to evict the page from
the EPC only to immediately load it to the EPC using the ELDU instruction. As the ELDU instruction
loads the page into the L1 cache and does not evict it afterwards, we can use the attack presented in
Section 3.3.5 to extract its content. Finally, the entire attack process is repeated for the next page of
the victim enclave.

3.3.8 Overall Attack Performance

In this section, we empirically evaluate the performance of our attack in retrieving data from the
address space of the victim enclave.

Reading Specific Memory Areas. Using the setup described in Section 3.1.2, we begin our eval-
uation with the assumption that the attacker desires to recover the contents of a specific memory
region inside the victim enclave. For this experiment, we launch our own victim enclave and filled
128 consecutive pages (512 KiB) of its memory with random data. Initially, using the attack de-
scribed in Section 3.3.7, we can read all of these pages, achieving a reading speed of 1.63 KiB/sec
and 56.6% accuracy.

Reducing Prefetching and Cache Noise. Next, to minimize cache pollution and prevent eviction
of cache lines containing secret data, we disabled several memory prefetchers [92]. While this
operation requires elevated privileges, recall that the SGX threat model assumes a malicious OS,
thereby giving the attacker elevated privileges on the target machine. Lastly, to improve the attack
accuracy, we gradually increased the value of maxTries in line 3 of Figure 3.4 if the extracted
value is 0x00 or 0xFF. Employing these two optimizations improves the read accuracy to 85.68%,
with a read speed of 1.58 KiB/sec.

Eliminating Noise Caused by Entering and Leaving the Enclave. Inspecting the errors in the
recovered data, we identify that these typically occur in bursts of cache line size (i.e., 64 bytes).
Observing that entering an enclave and exiting it are complex operations, we hypothesize that these
operations generate sufficient noise in the cache to evict the victim enclave data during the call to
speculative read in line 11 of Figure 3.4. We thus follow the approach proposed by [71, 98]
of having a thread continuously running inside the enclave calling speculative read, avoiding
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the enclave enter and exit operations. Using this optimization we were able to successfully read
99.93% of the bytes at 0.88 KiB/Sec.

Reading the Entire Enclave Contents. To read the contents of an entire victim enclave, without
knowing the specific virtual address of interest, we inspect the contents of /proc/pid/maps to
find the physical addresses that match each of the enclave pages. While the entire range of the
tested victim enclave is 16 MiB, only 4 MiB are allocated. Due to our optimization of dynamically
adjusting the number of repetitions in Figure 3.4 if the extracted value is 0x00 or 0xFF, reading pages
containing only zeros is significantly slower, yielding a read speed of 13.5 bytes/sec, compared with
880 bytes/sec for other pages. Overall, reading the entire enclave took 3:42 hours with 99.77% of
the bytes successfully read.

Attacks on Other Intel Processors. Our attack is not specific to the Kaby-Lake i7-7567U pro-
cessor, used in the above-described performance evolution and in principle can be applied to any
SGX-equipped CPU. Indeed, similar results were also obtained when attacking a previous genera-
tion of Intel CPUs, namely Skylake i7-6770HQ, i7-6700K, i7-6700, and i7-6500U.

3.4 Attacking SGX’s Sealing Mechanism

The attack described in Section 3.3 is capable of breaching SGX’s confidentiality guarantees, by
reading the virtual address space dedicated to any SGX enclave available on the target machine. It
cannot, however, breach SGX’s integrity guarantees as it is unable to modify the contents of enclave
memory.

In this section, we show an attack against SGX’s sealing mechanism, which is a mechanism
designed to provide enclaves with encrypted and authenticated persistent storage. In a nutshell, we
use our attack from Section 3.3 to recover the sealing keys from within the address space of the
victim enclave. We then use the recovered sealing keys to unseal the victim’s persistent storage and
replace its content. Finally, we use the recovered sealing keys again, this time to seal the new con-
tents, by encrypting it and calculating the new authentication information. The victim enclave can
now successfully unseal our (malicious) sealed data and, since the authentication information was
correctly computed, believes the data is genuine and has not been tampered with. Before presenting
our attack, we now provide further background information about the SGX sealing mechanism.

3.4.1 SGX’s Sealing Mechanism

SGX provides enclaves with a mechanism for an encrypted and authenticated persistent storage.
During CPU production, a randomly generated Root Seal Key, which is not kept in Intel’s records,
is fused in every SGX-enabled CPU. Using this key, the CPU can derive a sealing key, which can be
used to encrypt and authenticate information from within the enclave’s address space. Data that is
sealed with this key, i.e., encrypted and authenticated, can be safely passed to the operating system
for long-term storage, for example, on the computer’s disk. SGX provides two types of sealing
mechanisms, which we now describe (See [8, 45] for additional details).

Sealing Using the Enclave’s Identity. As described in Section 2.3, each enclave has a unique field,
called MRENCLAVE, which is a cryptographic hash of the contents used to initialize the enclave
code as well as some additional properties. Using the values of the Root Seal Key, MRENCLAVE,
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and the CPU Security Version Number (SVN) an enclave can use the EGETKEY instruction to derive
a unique sealing key for sealing data before passing it to the operating system for long term storage.
Note that as a consequence of this approach, for the same Root Sealing Key (i.e., on the same CPU),
different software versions of the same enclave have different sealing keys. This prohibits both data
migration between different versions of enclaves as well as using these sealed keys for intra-enclave
communication.

Sealing Using the Developer’s Identity. An alternative option to the one discussed above is to
generate the sealing key using the Root Seal Key, the SVN, and MRSIGNER (instead of MREN-
CLAVE). As we explain in Section 2.3, MRSIGNER is a cryptographic hash of the public RSA key
of the enclave developer and is the same for all enclaves developed by the same vendor. Thus, data
sealed in this way is accessible by different versions of the same enclave, as well as by different
enclaves belonging to the same vendor.

3.4.2 Extracting SGX Sealing Keys

Key derivation using EGETKEY leaves the sealing key in the memory of the victim enclave. Thus,
in principle, it is possible to read this key using our attack, described in Section 3.3 above. However,
immediately after using it to encrypt or decrypt the sealed data, the implementation of SGX’s sealing
API erases the sealing key from memory. Hence, to extract the key we need a method for launching
the attack described in Section 3.3 during the data sealing or unsealing process, before these keys
are erased from the memory.

A Control Channel Attack. We time our attack using a variant of the controlled channel at-
tack [100], inducing an Asynchronous Enclave Exit (AEX) when the enclave calls the encryption
function. More specifically, we first examine the shared object file of the victim enclave and find
the virtual addresses of the sealing and encryption functions inside the address space of the victim
enclave. Next, we use our malicious driver (subsection 3.3.4) to evict from the EPC the page(s)
containing the encryption and sealing functions. This induces a page fault and an asynchronous
enclave exit whenever the victim enclave attempts to call the encryption functions. However, as
the pages containing the monitored functions also contain code of other functions, the controlled
channel attack will trigger an enclave exit on accesses to these other functions and does not reveal
exactly which function caused the exit.

Determining the Precise Function Called. We note that during an AEX, the contents of all
registers are saved in a dedicated State Save Area (SSA), including the instruction pointer register,
which points to the next instruction to be executed by the enclave upon return from the AEX. The
SSA is located in the enclave’s virtual address space, and therefore its contents can be extracted
using the attack from Section 3.3. To find the SSA’s address, we follow the pointer to it found in a
special enclave page called Thread Control Structure (TCS). While the TCS is not readable even to
the enclave, it is readable to the attack described in Section 3.3.

Our attack thus proceeds as follows. Upon a page fault due to an access to the target page con-
taining the code for the SGX sealing and encryption functions, we use the attack from Section 3.3
to read the contents of the TCS and SSA and recover the value of the instruction pointer. In the
case that the instruction pointer points to a function other than the SGX encryption or decryption
functions, we load the evicted target page back into the EPC, evict a benign page we anticipate will
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be accessed next, and resume normal enclave execution. On the next page fault, caused by access
to the benign page, we evict the target page again.

However, if the instruction pointer points to the beginning of the encrypt or decrypt functions,
we know that the victim’s seal key is present in the victim’s memory, at an address pointed by
the RDI register, which is used by the compiler for passing function parameters. Our attack then
proceeds to extract the contents of RDI from the SSA. The victim’s seal key is then recovered from
the address pointed by RDI using the attack from Section 3.3.

3.4.3 Empirical Evaluation

We empirically evaluate the attack presented in this section, using the experimental setup described
in Section 3.1.2. We implemented a victim enclave which seals and unseals data. We successfully
launch our attack as described in this section and extract the sealing key from within the victim
enclave. Next, to validate we have the correct key, we implemented custom seal and unseal functions
that operate on a seal key, instead of calling SGX key derivation instruction (EGETKEY). Using these
functions, we can unseal the data sealed by the victim enclave as well as to seal new (malicious)
data, outside the victim’s enclave. Running the victim enclave again, the new data was successfully
unsealed without errors.

3.5 Attacking SGX Attestation

One of most compelling integrity properties provided by SGX is the ability of an enclave to attest to
a remote verifying party that it is running on genuine Intel hardware and not on an SGX simulator.
This attestation process proves to the remote party that the enclave leverages the data confidentiality
and execution integrity properties provided by SGX and, therefore, the remote party can transfer
secret data to the enclave. Specifically, the remote party trusts the enclave will not intentionally leak
the secret data provided by the remote party and that any data sent by the enclave is a result of a
trustworthy execution.

While the attacks described in Section 3.3 and 3.4 are capable of violating the confidentiality of
the entire address space of the victim enclave and the integrity of its sealed data, they cannot make
the victim violate program semantics, designed by the enclave writer.

In this section, we show that the attack described in Section 3.3 and 3.4, which violate the con-
fidentiality of the enclave address space and sealed inputs actually have devastating consequences
for the soundness property of SGX’s attestation protocol. More specifically, by mounting the at-
tack described above on the SGX’s Quoting Enclave, we are able to recover the private attestation
keys, used by the target machine for proving its genuineness. With these keys at hand, we are able
to construct a malicious simulator which passes attestation as if it was an SGX enclave running
on a genuine Intel processor, while executing the simulator code outside of an actual enclave. As
the private attestation keys are all that distinguish genuine Intel hardware from potentially malicious
simulators, the remote verifying party has no way of distinguishing between the two and thus cannot
trust the computation’s output to be correct.
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Figure 3.5: SGX’s Attestation Process.

3.5.1 SGX Remote Attestation

The remote attestation process allows a remote verifying party to verify that a specific software is
correctly initialized and executes within an enclave, on a genuine Intel CPU. At a high level, this is
performed as follows (see [50] for an extended discussion).

In addition to the Root Sealing Key (Section 3.4.1), every SGX-enabled CPU is also shipped
with a randomly-generated Root Provisioning Key (Step 1, Figure 3.5). However, unlike the Root
Sealing key, Intel does retain a copy of the Root Provisioning Key, as it acts as a shared secret be-
tween Intel and every individual CPU. Next, Intel provides two special enclaves, called the Quoting
Enclave and the Provisioning Enclave which are used in the attestation process.

Attestation Key Provisioning. The initialization phase of the SGX attestation protocol consists of
the Provisioning Enclave contacting Intel’s provisioning server, transmitting the CPU’s provision-
ing ID, and claimed security version (SVN). As the provisioning ID uniquely identifies a specific
CPU, it is only accessible to the Intel-signed Provisioning Enclave and is sent encrypted to the pro-
visioning server under Intel’s public key. After recovering the root provisioning key, corresponding
to the CPU’s provisioning ID, the provisioning server and Provisioning Enclave proceed to execute
the Join phase of Intel’s Enhanced Privacy ID (EPID) protocol [17], using the root provisioning key
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as a shared secret (Step 2, Figure 3.5).
At a high level, Intel’s EPID protocol is a type of group signature that allows a CPU to sign

messages (using its private signing keys) without uniquely disclosing its identity. All that an external
observer (e.g., Intel) can do is to verify the signature (thereby becoming convinced that it was signed
by a genuine Intel CPU belonging to the group), without being able to link it to any specific Intel
CPU or to other signatures it previously signed. See [17] for additional discussion.

Sealing the EPID Key. The Join phase of the EPID protocol results in the Provisioning Enclave
obtaining a private EPID signing key, which is not known to Intel. The Provisioning Enclave then
generates a sealing key for sealing the EPID signing key, using the CPU’s Root Sealing key, its
SVN and the MRSIGNER value of the Provisioning Enclave. It then seals the private EPID key
using this sealing key and outputs it to the OS for long term storage (Step 3, Figure 3.5). Notice
that as the Provisioning Enclave is provided and signed by Intel, its MRSIGNER value is a hash of
Intel’s public key. Consequently, any Intel-signed enclave can unseal the CPU’s private EPID key
by regenerating the sealing key used to seal it. While this design feature is indeed useful, as it allows
the Quoting Enclave (also signed by Intel) to unseal the private EPID key, it is also dangerous as the
OS actually has an encrypted copy of the CPU’s private EPID keys.

Local Attestation. When an enclave wants to prove to a remote verifier that it is running on genuine
Intel hardware with a specific security version, it first needs to prove its identity to the Quoting
Enclave, which is another special enclave provided and signed by Intel, via a processes referred to
by Intel as local attestation [8, 45]. At a high level, this is done by having the proving enclave use
the EREPORT instruction, which prepares a report containing the MRENCLAVE and MRSIGNER
values of the proving enclave. The report is also signed using a key that is only accessible to
the Quoting Enclave. The proving enclave then passes the report to the Quoting Enclave, which
proceeds with the remote attestation process (Step 4, Figure 3.5).

Remote Attestation. Upon receiving the report from the proving enclave, the Quoting Enclave
performs the remote attestation process, which we now describe. Indeed, after verifying that the
report was correctly signed by the EREPORT instruction, the Quoting Enclave proceeds with un-
sealing the EPID private key that was originally sealed by the Provisioning Enclave. Recall that the
EPID private key was sealed using a sealing key derived from the CPU’s SVN version, Root Sealing
Key, and the MRSIGNER value of the Provisioning Enclave. As both the Quoting Enclave and the
Provisioning Enclave are signed by Intel (and thus have the same MRSIGNER value), the Quoting
Enclave can regenerate this sealing key and subsequently unseal the private EPID key. Next, using
the unsealed private EPID signing key, the Quoting Enclave executes the Sign phase of the EPID
protocol and signs the report given to it by the proving enclave, creating an attestation quote. Fi-
nally, the Quoting Enclave returns the quote to the proving enclave, which in turn forwards it to the
remote verifying party (Step 5, Figure 3.5).

Attestation Verification. After the proving enclave sends the signed quote to the remote verifying
party, the remote party interacts with Intel’s Attestation Server (IAS [43]) and provides it with the
quote it obtained from the Quoting Enclave (Step 6, Figure 3.5). Next, IAS performs the Verify phase
of the EPID protocol while ensuring that the signer’s private EPID key has not been revoked by Intel.
Intel’s server completes the attestation by sending its response (OK, SIGNATURE INVALID, etc.)
to the remote party. The server’s response also contains the quote itself and is signed with Intel’s
signing key, generating a signed attestation transcript which can later be verified by any party that
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trusts Intel’s public key.

3.5.2 Extracting SGX Attestation Keys

In this Section, we describe our attack on SGX’s attestation protocol. As explained above, the
Quoting Enclave, which can access the EPID signing keys, will not sign a local attestation report
without first verifying it. Moreover, as mentioned in Section 3.5.1 above, the operating system
actually has a copy of the EPID private keys, which are sealed by a key derived from the CPU’s
Root Sealing Key. Our attack thus proceeds as follows.

Step 1: Recovering the Sealing Keys. Using the attack described in Section 3.4 on the Quoting
Enclave, our attack recovers the sealing keys used for sealing the EPID signing keys.

Step 2: Unsealing the EPID Signing Keys. With the above sealing keys, our attack proceeds to
unseal the private EPID keys, originally sealed by the Provisioning Enclave.

Step 3: A Malicious Quote Enclave. Using the source code of Intel’s Quoting Enclave [36], we
have constructed a malicious Quoting Enclave that signs any local attestation report with the EPID
keys, obtained in Step 2 above, without first verifying it.

Step 4: Breaking Attestation. Consider a malicious software that would like to masquerade as
a specific enclave and prove its “authenticity” and SGX security properties via remote attestation.
Given an enclave to masquerade, the malicious software first generates a false local attestation
report with the values of MRENCLAVE and MRSIGNER corresponding to the enclave it wants to
masquerade, as well as other metadata required for generating the local attestation report. It then
sends this report to the malicious Quoting Enclave.

We notice here that our malicious software is unable to sign the local attestation report, as it
doesn’t have access to the appropriate signing key. However, as our malicious Quoting Enclave
does not verify the report, the report is not required to be signed. Next, using the unsealed EPID
keys, our malicious Quoting Enclave generates a malicious attestation quote by signing the local
(false) attestation report. This malicious quote is then sent to the remote party.

Finally, the remote verifying party attempts to verify the malicious quote using Intel’s Attes-
tation Server (IAS). As the quote was indeed correctly signed by the malicious Quoting Enclave,
assuming that the EPID keys used are valid and have not been revoked, Intel’s attestation server will
accept the malicious quote and generate a signed transcript of the response. The transcript falsely
convinces the remote party that the enclave is running on a genuine Intel CPU (which is designed
to provide confidentiality and integrity), while it is actually running on our malicious, non-SGX
software, and does not offer any security guarantees.

3.5.3 Empirical Evaluation

In this section, we empirically demonstrate the feasibility of our attack on SGX’s attestation mech-
anism.

Extracting EPID Keys. Using the setup from Section 3.1.2, we have successfully extracted the
EPID sealing keys from a genuine SGX Quoting Enclave and subsequently unsealed the machine’s
private EPID keys.
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Signing Fake Attestation Quotes. Demonstrating our ability to sign arbitrary attestation quotes,
we created a local attestation report setting the MRENCLAVE field, “representing” the SHA-256
of the enclave’s initial state, to be the string “Is your enclave cheating on you?”, the MRSIGNER,
“representing” the SHA-256 of the public key of the enclave writer, to be “SGX-ray: Trustworthy
Speculation”, and the report’s debug flag to 0, thereby indicating that the enclave is a production en-
clave. We have also populated the report’s body (commonly used for establishing a Diffie-Hellman
key exchange with the enclave corresponding to the report) to be “Mary had a little lamb, Little
lamb, little lamb, Mary had a....”. Finally, we signed the report via our malicious Quoting Enclave
using the above-described unsealed EPID signing keys, thereby producing an attestation quote.

Quote Verification. Verifying the validity of our quote, we have contacted Intel’s Attestation
Server (IAS) and provided it with the above generated quote. As explained in [17, 50], the attestation
server will only approve the quote if it can verify that the quote’s EPID signature is correct. Since
we have correctly extracted a non-revoked EPID private signing key, the attestation server deemed
our quote as correct and replied with “isvEnclaveQuoteStatus:OK”, signing its response with Intel’s
private key and accompanied it with the appropriate certificate chain leading to Intel’s CA certificate.
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Chapter 4

Multi-SUVM: Better Support for
Multi-Enclaves

4.1 Background

The Secure User-managed Virtual Memory (SUVM) [71] abstraction provides a user-space mecha-
nism for managing secure memory on top of the enclave’s EPC, eliminating costly EPC hardware
page faults and the associated enclave exits.

SUVM is designed as an additional level of virtual memory (VM) on top of hardware VM. The
enclave program allocates memory by calling suvm malloc(), which returns a special pointer
we call a secure active pointer, or spointer. Spointers implement the same semantics as regular
pointers, but they encapsulate the address translation mechanism which steers respective memory
accesses to use SUVM.

SUVM implements a full-fledged paging system, with its own page table and a page cache in
the EPC, and a backing store in untrusted memory of the enclave’s owner process (see Figure 4.1).
The SUVM page cache, EPC++, caches the contents of the backing store in the trusted memory.
The SUVM page table maintains the mapping between EPC++ pages and the location of the cached
content in the backing store. When an application accesses pages not resident in EPC++, an equiv-
alent of a page fault occurs, but it is triggered by and handled in software. Specifically, the enclave
handles the page fault by transferring the page content from the backing store into EPC++. SUVM
software paging does not require exiting the enclave. SUVM mimics the behavior of the original
SGX paging, maintaining privacy, integrity, and freshness of the evicted pages.

Secure backing store. A secure backing store is allocated in untrusted memory of the process
that owns the enclave. The data is initialized inside the enclave, but is written back to the backing
store when a page is evicted from EPC++. Upon eviction, the page is first encrypted with a random
per-page nonce and signed using a random per-application key stored in the EPC. When the page
is paged in, its integrity is checked to avoid replay and data manipulation attacks. The nonce and
the page signature are stored in the page table inside the enclave. The encryption, signing, and
validation operations use AES-GCM just like the EWB SGX instruction, as described in the SGX
manual [3].

Periodic page eviction. In vanilla SGX, EPC page eviction is the responsibility of the SGX driver.
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In Eleos, the eviction logic runs inside the enclave. Eviction may occur in three cases: (1) when
EPC++ is full and a new page has to be paged in due to a page fault, (2) when an EPC++ swapper
thread, which is periodically invoked by the untrusted runtime, removes some pages to maintain
enough pages in the EPC++ free memory pool, and (3) when the swapper thread removes pages to
reduce the size of EPC++ upon request of the SGX driver, e.g., when another enclave is started, as
we explain in §4.3.1.

The eviction logic runs inside the enclave and is trusted, obviating the need to use costly un-
trusted EPC page table manipulation instructions such as EWB, EBLOCK and ETRACK.

4.2 Our Contribution

PRM is shared by all enclaves. Under PRM pressure, e.g., due to new enclave invocation, the SGX
driver may evict part of the SUVM page cache, undermining its performance benefits. Therefore,
Multi-SUVM coordinates the size of its page cache with the SGX driver to avoid thrashing, sim-
ilarly to ballooning in virtual machines [93]. As a result, performance of multi-enclave execution
improves by up to 3.5× (§4.5).

4.3 Challenges

The SGX driver does not store any information about the currently executing enclaves, because
management of such meta-structures complicates the synchronization of the driver.

In order for us to be able to serve the in-enclave Multi-SUVM controller efficiently, we decided
to add our dedicated locks to the Multi-SUVM kernel component, thus maintaining the correctness
of both our code and the SGX driver.

4.3.1 Multi-SUVM

Design. While designing Multi-SUVM, we had these design goals in mind:

• Performance. We seek to reduce the cost of running memory-demanding server applications
in multi-enclave environments.

• Small TCB. Multi-SUVM adds relatively little code into the enclave’s TCB.

• Ease-of-use. Multi-SUVM is transparent to application developers, so no special effort is
required for usage in systems that support SUVM.

• Security. Multi-SUVM does not change the original SGX security guarantees, nor does it
improve or weaken them.

Design overview. Figure 4.1 shows the high-level design. There are three components:

1. Multi-SUVM controller. the trusted runtime, which provides the SUVM inside the enclave

2. Multi-SUVM coordinator. an untrusted runtime running in a separate application thread to
handle RPC requests and to interact with the SGX driver
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3. Multi-SUVM kernel component the SGX driver module, which exposes the interface for
coordinating SUVM memory allocation across enclaves

We now describe each component in detail.

Kernel Space User Space

SGX Driver

Multi-SUVM 
kernel 

component

SGX Enclave

Multi-SUVM
coordinator

SUVM Enclave 
component

Multi-SUVM 
controller

Figure 4.1: Multi-SUVM high-level design

In this work, we present Multi-enclave memory allocation - Multi-SUVM
Any EPC page, and in particular EPC++ memory, may be evicted from the EPC by the SGX

driver. Unfortunately, this renders the SUVM exit-less paging mechanism useless, because access-
ing evicted SUVM pages would still result in a hardware page fault, and even incur additional
SUVM translation penalty. This problem becomes severe with multiple enclaves, because the driver
redistributes the secure memory dynamically as enclaves get invoked, without notifying the enclaves
of the EPC allocation changes.

We, therefore, extend the SGX driver to coordinate EPC page eviction and allocation with the
untrusted user-space runtime. Specifically, the runtime periodically queries the SGX driver to deter-
mine the secure memory space available to the enclave, adjusting the EPC++ allocation accordingly.
To adjust the allocation of running enclaves the runtime invokes the SUVM swapper thread, which
enters the enclave and frees or adds pages to its EPC++.

Similarity to ballooning. We note that the basic idea of collaborative management of EPC++
across enclaves is similar to that of memory ballooning [93], used by a hypervisor to manage mem-
ory allocation among virtual machines. However, whereas a hypervisor has no direct control of the
OS memory consumption, the Eleos trusted runtime can directly modify the enclave’s working set
by evicting or adding new pages to its EPC++.

Key Differences between Multi-SUVM and ballooning. We also note that in memory ballooning
for traditional virtualization, there hypervisor must work under the assumption that the VM could
be malicious, and enforce the ballooning even if the VM does not cooperate.

In the SGX model, since only authorized enclaves that were signed by Intel are allowed to run in
production systems, it is safe to assume there are no malicious enclaves in the system, thus allowing
the OS to delegate the responsibility of actually resizing the EPC++ to the enclaves.
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This way, the OS never has to restrict the enclave’s EPC usage without coordinating with the
enclave.

4.4 Implementation and Limitations

We implement the Multi-SUVM prototype for Linux on Skylake SGX-enabled CPUs.

SGX driver modifications. We add an ioctl() to query the amount of PRM available for a
given enclave. Today’s driver splits the PRM evenly among the enclaves, and therefore our imple-
mentation returns the number of active enclaves as a simple heuristic.

SUVM Modifications. In SUVM the size of the EPC was hard-coded and set in compile time. We
moved it into a dynamic variable, and added synchronization primitives to handle resizing of the
EPC++ while being accessed.

EPC++ resizing. Our implementation currently lacks working support for dynamic EPC++ resiz-
ing and thus we resort to initialization-time configuration.

Enclave cooperation. The driver code trusts the enclave code to poll the driver and free unused
EPC++. We believe that this assumption is reasonable, because production enclaves must be signed
by Intel, which ensures no malicious code inside them.

Blocking debug enclaves. The current SGX driver allows executing both debug and release en-
claves. There is no way for us to assure that debug enclaves would implement our policy properly.
This is why Multi-SUVM does not support them.

However, since we do not have the ability to write production enclaves, all the experiments in
this chapter were conducted on debug enclaves.

4.5 Evaluation

We evaluate Eleos for multi-enclave environments using microbenchmarks.

Setup. We use a Dell OptiPlex 7040 machine, with Intel Skylake i7-6700 4-core CPU with 8MB
LLC, 128 MB PRM (about 93MB available for applications), 16 GB RAM, and 256 GB SSD drive.
The machine runs Ubuntu Linux 14.04 64-bit, Linux 4.2.0-36, and the latest Intel SGX driver [5],
SDK and platform software (PSW) [4] with our modifications for performance measurements. We
use GCC 4.8.4, and compile using the SGX SDK Prerelease configuration, which has the same
performance as production enclaves [3].

Measurement methodology. Measuring in-enclave performance is a non-trivial challenge: hard-
ware performance counters cannot be used inside the enclave because reading them (including
RDTSC) from enclave is not supported 1. In addition, profilers that use them rely on interrupts
for sampling, which in turn induce enclave exits and distort the actual values of the counters.

Instead, we use a measurement thread outside the enclave to sample the timer. The thread is
signaled from the enclave via a shared flag to measure in-enclave execution time. The measurement
error is about 200 cycles, which is an order of magnitude smaller than the values we measure in the
experiments.

1Attempts to issue RDTSC or RDPMC on our platform resulted in #UD.
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Unless specified, we measure end-to-end performance, run each experiment 60 times, with the
first ten invocations as warm-up, and report the average of the rest. The standard deviation is within
5% across all the experiments and is not reported.

Coordinated allocation of EPC++ across enclaves. Each experiment measures the throughput
of 4K random reads for three different sizes of arrays. We test three configurations: native SGX,
SUVM with correctly configured EPC++ =30MB (fitting in PRM with two enclaves), and SUVM
with incorrectly configured EPC++ =50MB (which causes thrashing with two enclaves). Figure 4.2
confirms that the EPC++ size has to be adjusted in response to PRM pressure. Running two enclaves
with incorrectly configured EPC++ causes both SUVM and SGX faults, which results in up to 3.4×
lower throughput compared to correctly configured EPC++.

Figure 4.2: EPC++ resizing: slowdown of running two enclaves with SGX and incorrectly config-
ured EPC++ over two enclaves with Multi-SUVM. Lower is better.
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Chapter 5

Conclusions

In this work, we present novel security and performance issues regarding Intel SGX. Since SGX
is implemented in hardware which is hard which is relatively hard to update and re-distribute, we
tackled the question of which issues can and cannot be resolved only in software.

In the first part of this work, we show that the memory protection of SGX enclaves does not pro-
tect against a Meltdown-like attack. We build a generic read primitive that allows us to easily read
the memory of victim enclaves, including pages that are not accessible to the enclaves themselves.
Thus, our attack breaks all of the confidentiality guarantees of SGX. We show how our read primi-
tives can be used to read secrets from an enclave, with a specific example of retrieving the sealing
key from the Intel Quoting Enclave. Retrieving the sealing key of an enclave allows us to read and
modify the persistent storage of the enclave. Thus, our attack breaks the integrity guarantees of the
sealing mechanism. The sealing key of the Quoting Enclave gives us access to the host’s attestation
key. With access to this key, we demonstrate that we can sign arbitrary attestation quotes, eroding
the trust in the SGX ecosystem.

Our attack exposes the fragility of the SGX ecosystem, where a single vulnerability can result
in cascading compromises that erode the security and trust properties of SGX. Intel have developed
mitigations for the specific vulnerability we exploit. Nevertheless, we cannot rule out a future con-
fidentiality breach to the SGX ecosystem that may again lead to cascading vulnerabilities that erode
trust. We thus urge the community to research defense in depth for TEE technologies as well as
provide inspectable open source TEE designs in the hopes of making future vulnerabilities easier to
identify, mitigate, and recover. We hope that this will prevent future downfalls of a TEE ecosystem
due to one breach. We also prove that mitigating our attack in software only, is impossible.

Next, we show that the performance of SGX paging can be improved with our software imple-
mentation of Multi-SUVM. Multi-SUVM is essentially different from previous work of memory
ballooning by [93], because the trust model is completely different. In [93], the authors must take
into design consideration a misbehaving virtual machine, even in the cost of losing performance. It
is not the case with SGX, where all the production enclaves are trusted. We evaluate our system,
and present a 65% and 3.4× improvement in speedup and throughput, respectively.
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[91] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul Strackx. Telling
your secrets without page faults: Stealthy page table-based attacks on enclaved execution. In
Proceedings of the 26th USENIX Security Symposium. USENIX Association, 2017.

[92] Vish Viswanathan. Disclosure of H/W prefetcher control on some In-
tel processors. https://software.intel.com/en-us/articles/

disclosure-of-hw-prefetcher-control-on-some-intel-processors,
September 2014.

[93] Carl A Waldspurger. Memory resource management in VMware ESX server. ACM SIGOPS
Operating Systems Review, 36(SI):181–194, 2002.

[94] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang, Vincent Bind-
schaedler, Haixu Tang, and Carl A. Gunter. Leaky cauldron on the dark land: Understanding
memory side-channel hazards in SGX. In CCS, pages 2421–2434. ACM, 2017.

[95] Zhenghong Wang and Ruby B Lee. Covert and side channels due to processor architecture.
In Computer Security Applications Conference, 2006. ACSAC’06. 22nd Annual, pages 473–
482. IEEE, 2006.

[96] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger Kapitza. Asyncshock: Ex-
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,    SGXל   של         מובל עות שבעזר ביצועים ואבטחה של תה של  מר ביצועים ואבטחה של וחקת עדות של  מאוד חשובה של  תכונה של  יכול ותל ה של וכיח  SGXישנה של 
על                 ול א אינטל  של  אמיתית חומר ביצועים ואבטחה של ה של  על  ושה של ןר ביצועים ואבטחה של צות אתה של קודה של נכון מר ביצועים ואבטחה של יצות שה של ן ל משתמשה של מר ביצועים ואבטחה של וחק

סימול טור ביצועים ואבטחה של .

            , של   ואתה של אבטחה של  אתה של ביצועים ואבטחה של  ול שפר ביצועים ואבטחה של  יותר ביצועים ואבטחה של  טוב ניסינול ה של בין אנו זו שה של .   SGXבעבודה של  ממומש SGXמכיוון
     , יקר ביצועים ואבטחה של ים ואבטחה של ,          שינויים ואבטחה של  דור ביצועים ואבטחה של שים ואבטחה של  שיפור ביצועים ואבטחה של ים ואבטחה של  ואיל ו בתוכנה של  ניתןל בצע שיפור ביצועים ואבטחה של ים ואבטחה של  איל ו וניסינול ה של בין ניתחנו אנחנו בחומר ביצועים ואבטחה של ה של 

        , פעול ה של .      חומר ביצועים ואבטחה של ה של ל כל ה של מעבדים ואבטחה של ה של יא עדכוני שה של פצת מכיוו חשובה של  מאוד בחומר ביצועים ואבטחה של ה של ה של ה של פר ביצועים ואבטחה של דה של ה של זאתה של יא
. תוכנה של        עדכון מאשר ביצועים ואבטחה של  ומור ביצועים ואבטחה של כבת יקר ביצועים ואבטחה של ה של  יותר ביצועים ואבטחה של  ה של ר ביצועים ואבטחה של בה של 

    , את     מציגים ואבטחה של  אנו זו עבודה של  של  מובל עות,      Foreshadowבחל קה של ר ביצועים ואבטחה של אשון על  אר ביצועים ואבטחה של כיטקטונית מיקר ביצועים ואבטחה של ו ,SGXמתקפה של 

.     , במטמון         נמצא וה של מידע בתנאי של ה של מובל עת אתה של זיכר ביצועים ואבטחה של וןה של פר ביצועים ואבטחה של טי שמאפשר ביצועים ואבטחה של תל מער ביצועים ואבטחה של כתה של ה של פעל ה של ל קר ביצועים ואבטחה של וא
בעזר ביצועים ואבטחה של ת       כיצד מציגים ואבטחה של  אנחנו מער ביצועים ואבטחה של כתה של עדות,       Foreshadowבה של משך תקופתה של עבודה של  כל  את יכול ים ואבטחה של ל שבור ביצועים ואבטחה של  אנחנו

        , במנגנוןה של עדות,      כל ה של אמון את מסוגל ים ואבטחה של ל מוטט אנחנו של נו אחת מכונה של  פר ביצועים ואבטחה של יצת ושבעזר ביצועים ואבטחה של ת ה של מר ביצועים ואבטחה של וחקת
של    .SGXה של מר ביצועים ואבטחה של וחקת

     , חומר ביצועים ואבטחה של ה של ה של ם ואבטחה של ה של כר ביצועים ואבטחה של חיים ואבטחה של ל צור ביצועים ואבטחה של ך תקופת,          ושעדכוני בתוכנה של  ניתןל מגר ביצועים ואבטחה של  שאתה של מתקפה של ה של זאתל א מוכיחים ואבטחה של  אנחנו ל בסוף אני רוצה להודות לטניה ברוכמן, וסיליס
של ה של מובל עת.                מוצפן מידע כדיל פענח מנגנוןה של דפדוף אני רוצה להודות לטניה ברוכמן, וסיליס את מנצל ים ואבטחה של  שאנחנו בכך תקופת זאת מוכיחים ואבטחה של  אנחנו כך תקופת

    ,          . תוכנתית    גישה של  אף אני רוצה להודות לטניה ברוכמן, וסיליס אין כך תקופת צר ביצועים ואבטחה של יך תקופתל ר ביצועים ואבטחה של וץ, מניל שם ואבטחה של  של ה של מובל עתל א שקוד מכיוון אותול תוך תקופתה של מטמון ול טעון
. של נו    אתה של מתקפה של  שתמנע

        , של      מובל עות של  בשיפור ביצועים ואבטחה של ה של אבטחה של  מתמקדים ואבטחה של  אנו זו עבודה של  של  קודמותר ביצועים ואבטחה של אינו.   SGXבחל קה של שני בעבודות
       , של         פקודותה של דפדוף אני רוצה להודות לטניה ברוכמן, וסיליס את ניתןל שפר ביצועים ואבטחה של  מה של מובל עת איטית ביציאה של  מל ווה של  דפדוף אני רוצה להודות לטניה ברוכמן, וסיליס פעול ת שכל  SGXשמכיוון

     , שנקר ביצועים ואבטחה של א  תוכנה של  מנגנון באמצעות משמעותי .SUVMבאופן

של         מנגנוןה של דפדוף אני רוצה להודות לטניה ברוכמן, וסיליסה של חומר ביצועים ואבטחה של תי את מחקה של  ,SGXה של מנגנון   , בחומר ביצועים ואבטחה של ה של ,      ול א בתוכנה של  מתבצע שה של וא מכיוון אבל 
.      , משמעותי    ביצועים ואבטחה של  שמוביל ל שיפור ביצועים ואבטחה של  מה של  מה של מובל עת נחסכותה של יציאותה של יקר ביצועים ואבטחה של ות

    , את  מציגים ואבטחה של  אנחנו את-     Multi-SUVMבעבודה של ה של זאת שמר ביצועים ואבטחה של חיבה של  תוכנתית בסביבות  SUVMמער ביצועים ואבטחה של כת ל עבוד
    . ש- גיל ינו אנחנו מובל עות ,     SUVMמר ביצועים ואבטחה של ובות - מנגנון     שם ואבטחה של  קיים ואבטחה של  של א מכיוון מובל עות מר ביצועים ואבטחה של ובות בסביבות יעיל  ל א

  . ב  משאבים ואבטחה של  שמוביל ,         Multi-SUVMשיתוף אני רוצה להודות לטניה ברוכמן, וסיליס אתה של מובל עות שמנה של ל ת שינויל מער ביצועים ואבטחה של כתה של פעל ה של  מציגים ואבטחה של  אנחנו
        . ב  זמןה של ר ביצועים ואבטחה של יצה של  את מצל יחים ואבטחה של ל שפר ביצועים ואבטחה של  אנחנו בביצועים ואבטחה של  פי,      65%ל שיפור ביצועים ואבטחה של  של ה של מער ביצועים ואבטחה של כת .3.4ואתה של ספיקה של 
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תקציר ביצועים ואבטחה של 

SGX   . את            בכדיל שפר ביצועים ואבטחה של  אינטל  מעבדי של  סטה של פקודות את חדשה של ה של מר ביצועים ואבטחה של חיבה של  חומר ביצועים ואבטחה של ה של  טכנול וגית ה של יא
       , סביבות       מובל עותה של מה של וות מאפשר ביצועים ואבטחה של תל אפל יקציותל ייצר ביצועים ואבטחה של  גביה של מעבדה של יא על  תוכניותה של ר ביצועים ואבטחה של צות של  ה של אבטחה של 

        . . מה של תוכנית     נסתר ביצועים ואבטחה של ים ואבטחה של  של ה של מובל עת ותוכןה של אוגר ביצועים ואבטחה של ים ואבטחה של  יה של זיכר ביצועים ואבטחה של וןה של פר ביצועים ואבטחה של טי בתוך תקופתה של מעבד ובטוחות מבודדות חישוב
     ,  .    , גישה של ל זיכר ביצועים ואבטחה של ון     יש זאת מער ביצועים ואבטחה של כתה של ה של פעל ה של ל מובל עתל עומת כול ל  ומכל ה של תוכניותה של אחר ביצועים ואבטחה של ות אותה של  ה של מאר ביצועים ואבטחה של חת

. אותה של     של ה של אפל יקציה של ה של מאר ביצועים ואבטחה של חת

    , של      שמובל עות בשפתה של מכונה של    SGXבר ביצועים ואבטחה של מתה של אר ביצועים ואבטחה של כיטקטור ביצועים ואבטחה של ה של ה של נחשפתל כותבה של אפל יקציה של ל מר ביצועים ואבטחה של ות נכתבות
          , של      אתה של זיכר ביצועים ואבטחה של ון שנועדול נה של ל  ומיוחדות חדשות דפדוף אני רוצה להודות לטניה ברוכמן, וסיליס פקודות ישנן אינטל  של  של ה של מעבד ה של וותיקה של 

ה של מובל עת.

     .       , על יית  בעת שמוקצה של  זיכר ביצועים ואבטחה של ון זה של ו של ה של מובל עת בזיכר ביצועים ואבטחה של וןה של דפים ואבטחה של  משתמשת בר ביצועים ואבטחה של מתה של חומר ביצועים ואבטחה של ה של ה של מובל עת
   . זיכר ביצועים ואבטחה של וןה של מוצפן.            זה של ו של ה של מובל עת מטמוןה של דפים ואבטחה של  בתוך תקופת נשמר ביצועים ואבטחה של  של ה של מובל עת כל ה של זיכר ביצועים ואבטחה של וןה של פר ביצועים ואבטחה של טי ה של מער ביצועים ואבטחה של כת

    ,        , כל       את שיכול ל קר ביצועים ואבטחה של וא פיזיתל מכונה של  גישה של  בעל  תוקף אני רוצה להודות לטניה ברוכמן, וסיליס שאפיל ו כך תקופת ור ביצועים ואבטחה של קל מעבד אך תקופת שנגיש מפתח בעזר ביצועים ואבטחה של ת
  . כאשר ביצועים ואבטחה של ה של מובל עת,             של ה של מובל עת מטמוןה של דפים ואבטחה של  בתוך תקופת אתה של סודות אול שנות מסוגל ל קר ביצועים ואבטחה של וא אינו ה של זיכר ביצועים ואבטחה של ון

   ,      , בצור ביצועים ואבטחה של ה של        אותו וטוען בעבור ביצועים ואבטחה של ה של  אתה של מידע מפענח של ה של מובל עתה של מעבד מזיכר ביצועים ואבטחה של וןה של דפים ואבטחה של  מידע ר ביצועים ואבטחה של וצה של ל קר ביצועים ואבטחה של וא
. של ה של מעבד      תוך תקופתה של מטמון אל  קר ביצועים ואבטחה של יאה של 

 , מער ביצועים ואבטחה של כת             של ה של מובל עת מטמוןה של דפים ואבטחה של  בתוך תקופת זמין מאשר ביצועים ואבטחה של  זיכר ביצועים ואבטחה של ון יותר ביצועים ואבטחה של  דור ביצועים ואבטחה של שות במער ביצועים ואבטחה של כת כאשר ביצועים ואבטחה של ה של מובל עות
תוך תקופתה של זיכר ביצועים ואבטחה של וןה של ל א               אל  של ה של מובל עת דפים ואבטחה של  מנתל דפדף אני רוצה להודות לטניה ברוכמן, וסיליס על  מיוחדות בפקודות יכול ה של ל ה של שתמש ה של ה של פעל ה של 

            . אתה של זיכר ביצועים ואבטחה של ון,  אפשר ביצועים ואבטחה של ותל קר ביצועים ואבטחה של וא מבל יל תתל מער ביצועים ואבטחה של כתה של ה של פעל ה של  כדיל תמוך תקופתה של פעול ה של ה של זאת וחזר ביצועים ואבטחה של ה של  מוצפן
         , מער ביצועים ואבטחה של כתה של ה של פעל ה של    עבור ביצועים ואבטחה של  דפים ואבטחה של  ומפענחות שמצפינות פקודות מספקת של ה של מובל עתה של אר ביצועים ואבטחה של כיטקטור ביצועים ואבטחה של ה של  ה של פר ביצועים ואבטחה של טי

. מפתחותה של נגישים ואבטחה של ר ביצועים ואבטחה של קל חומר ביצועים ואבטחה של ה של      בעזר ביצועים ואבטחה של ת
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 תודות

.     , עבור ביצועים ואבטחה של י          מעול ה של  מנחה של  זיל בר ביצועים ואבטחה של שטייןה של יית מר ביצועים ואבטחה של ק ול ה של ודותל פר ביצועים ואבטחה של ופסור ביצועים ואבטחה של  אתה של ער ביצועים ואבטחה של כתיה של מיוחדת אניר ביצועים ואבטחה של וצה של ל ה של ביע
של י                 אתה של מחקר ביצועים ואבטחה של  שעודדת כך תקופת על  ואניר ביצועים ואבטחה של וצה של ל ה של ודותל ך תקופת מכיר ביצועים ואבטחה של ה של  שאני חכמים ואבטחה של  אחדה של אנשים ואבטחה של ה של כי אתה של 

.        . בפז    תסול א של יל א של ך תקופתל מחקר ביצועים ואבטחה של  כחוקר ביצועים ואבטחה של תה של תר ביצועים ואבטחה של ומה של  ואפשר ביצועים ואבטחה של תל יל גדול 

       ,'   ,   , קומה של       של  ול כל ה של דייר ביצועים ואבטחה של ים ואבטחה של  שטר ביצועים ואבטחה של נפל ד בעז מאדל וג דבר ביצועים ואבטחה של ןל ינה של  איתי סוסין ואן 4אניר ביצועים ואבטחה של וצה של ל ה של ודותל בור ביצועים ואבטחה של יס

 ,       . וסיל יס         בר ביצועים ואבטחה של וכמן אניר ביצועים ואבטחה של וצה של ל ה של ודותל טניה של  בנוסף אני רוצה להודות לטניה ברוכמן, וסיליס במה של ל ך תקופתל ימודי סיפקול י שה של ם ואבטחה של  על ה של תמיכה של ה של ר ביצועים ואבטחה של בה של  בטאוב
קבוצתה של ,        שאר ביצועים ואבטחה של  ול כל  בר ביצועים ואבטחה של גמן שי .ACGדימיסטאס

 ,   :          , מני  פבל ל יפשיץ, מני נפל אים ואבטחה של  אנשים ואבטחה של  מה של ר ביצועים ואבטחה של בה של  ול מוד פעול ה של  בשיתוף אני רוצה להודות לטניה ברוכמן, וסיליס מזל יל עבוד במה של ל ך תקופתל ימודיה של תמזל 
.     ,    ,   ,   ,   , סטר ביצועים ואבטחה של אקס,   ור ביצועים ואבטחה של אול  פיסנס פר ביצועים ואבטחה של נק בול ק ואן יו יר ביצועים ואבטחה של ום ואבטחה של  יובל  ווניש תומאס גנקין דניאל  וויס אופיר ביצועים ואבטחה של  אור ביצועים ואבטחה של נבך תקופת

     , ול ,       חשמל  במחשבל פקול טה של ל ה של נדסת אניר ביצועים ואבטחה של וצה של ל ה של וסותל פקול טה של ל מדעי , TCEל בסוף אני רוצה להודות לטניה ברוכמן, וסיליס על   בטכניון
. ממנה של ר ביצועים ואבטחה של בות        שנה של ניתי נה של דר ביצועים ואבטחה של ת מחקר ביצועים ואבטחה של ית סביבה של  שסיפקול י

      , שם ואבטחה של    על  של ה של טכניון מודה של ל טכניוןל מר ביצועים ואבטחה של כזה של סייבר ביצועים ואבטחה של  Hiroshiאני  Fujiwara     על ול מער ביצועים ואבטחה של ך תקופתה של סייבר ביצועים ואבטחה של ה של ל אומי
. במשך תקופתה של שתל מותי    ה של תמיכה של ה של נדיבה של 
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(   . מה של פקול טה של          זיל בר ביצועים ואבטחה של שטיין מר ביצועים ואבטחה של ק פר ביצועים ואבטחה של ופ של  בה של נחייתו בטכניון בפקול טה של ל מדעיה של מחשב בוצע ה של מחקר ביצועים ואבטחה של 
.) חשמל   ל ה של נדסת

תקופת             במה של ל ך תקופת בכנסים ואבטחה של  ושותפיה של ל מחקר ביצועים ואבטחה של  מאתה של מחבר ביצועים ואבטחה של ת כמאמר ביצועים ואבטחה של ים ואבטחה של  פור ביצועים ואבטחה של סמו זה של  בחיבור ביצועים ואבטחה של  מה של תוצאות חל ק
:      , ביותר ביצועים ואבטחה של ה של ינן    גר ביצועים ואבטחה של סאותיה של ם ואבטחה של ה של עדכניות אשר ביצועים ואבטחה של  של ה של מחבר ביצועים ואבטחה של ת מחקר ביצועים ואבטחה של ה של מאסטר ביצועים ואבטחה של 
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Wenisch, T.F., Yarom, Y. and Strackx, R., 2018.  Foreshadow: Extracting the Keys to the Intel 

SGX Kingdom with Transient Out-of-Order Execution. In 27th USENIX Security Symposium 

)USENIX Security 18(, pp. 991-1008.

2. Orenbach, M., Lifshits, P., Minkin, M. and Silberstein, M., 2017, April. Eleos: ExitLess OS 

services for SGX enclaves. In Proceedings of the Twelfth European Conference on Computer 

Systems )EuroSys 17(, pp. 238-253.
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ואבטחה של של      ביצועים ואבטחה של  SGXשיפור ביצועים ואבטחה של 

מחקר ביצועים ואבטחה של    על  חיבור ביצועים ואבטחה של 

של ה של דר ביצועים ואבטחה של ישותל קבל תה של תואר ביצועים ואבטחה של         חל קי מיל וי ל שם ואבטחה של 

במדעיה של מחשב    מגיסטר ביצועים ואבטחה של ל מדעים ואבטחה של 

מינקין  מר ביצועים ואבטחה של ינה של 

טכנול וגיל ישר ביצועים ואבטחה של אל    –    מכון ה של וגשל סנטה של טכניון

דצמבר ביצועים ואבטחה של      חיפה של  2018טבתה של תשע״ט
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