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Abstract

Fast Fourier Transforms(FFTs), particularly over finite fields, have a main role in a large
set of applications in the fields of signal and image processing, coding and cryptography.
The computation of additive FFTs over finite fields is considered as a simpler and more
scalable method than multiplicative FFTs due to the additive and recursive structure
of finite fields. In this work we present an implementation of an algorithm to compute
additive FFTs over finite fields of characteristic two — “binary fields” — to evaluate and
interpolate polynomials of high degree over large affine subspaces. While previous works
were applied only to linear subspaces, we apply a small modification to an existing
algorithm to compute additive FFTs over affine subspaces as well. We present a parallel
implementation of this algorithm for the GPU architecture and discuss its performance.

The FFT algorithm relies on an implementation of finite field arithmetics. Binary
fields are used in a variety of applications in cryptography and data storage. Mul-
tiplication of two finite field elements is a fundamental operation and a well-known
computational bottleneck in many of these applications, as they often require multiplica-
tion of a large number of elements. In this work we focus on accelerating multiplication
in “large” binary fields of sizes greater than 232. We devise a new parallel algorithm opti-
mized for execution on GPUs. This algorithm makes it possible to multiply large number
of finite field elements, and achieves high performance via bit-slicing and fine-grained
parallelization.

The key to the efficient implementation of the algorithm is a novel performance
optimization methodology we call the register cache. This methodology speeds up an
algorithm that caches its input in shared memory by transforming the code to use
per-thread registers instead. We show how to replace shared memory accesses with
the shuffle() intra-warp communication instruction, thereby significantly reducing or
even eliminating shared memory accesses. We thoroughly analyze the register cache
approach and characterize its benefits and limitations.

We apply the register cache methodology to the implementation of the binary finite
field multiplication algorithm on GPUs. We achieve up to 138x speedup for fields of
size 232 over the popular, highly optimized Number Theory Library (NTL) [V. 03],
which uses the specialized CLMUL CPU instruction, and over 30x for larger fields of size
below 22%6. Our register cache implementation enables up to 50% higher performance

compared to the traditional shared-memory based design.
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Chapter 1

Introduction

Motivation

Interactive proofs (IP) were introduced to the world by Babai and Moran [L. 88] and
by Goldwasser et al. [S. 89]. In an interactive proof, a protocol takes place between two
main entities, a computationally-unbounded Prover and a computationally-bounded
Verifier. Along the protocol the prover tries to prove a certain claim to the verifier,
while the verifier has to verify the prover’s proof using a probabilistic procedure. He
can also ask the prover some questions regarding his proof, get the prover’s answers
and so on. After getting all the information he needs, the verifier can either accept or
reject the proof.

A special kind of IP protocols are called PCP-protocols [L. 90,L. 91,S. 98, AS98|
in which the verifier does not read the whole proof given to him by the prover, but
only a small and negligible part of it and decides whether to accept or reject the proof
according to the part he has read.

A major practical implication of the theorem is the ability to succinctly prove the
computational integrity of a program running in time 7'(n) using a PCP protocol with
proof of length poly (T'(n)) is presented in [L. 90], [L. 91], [Kil92] and [Mic94].

The application motivating this work is to efficiently implement a family of probabilis-
tically checkable proofs (PCP) of quasi-linear length, based on the work of Ben-Sasson
and Sudan [E. 08]. This application is envisioned to enable verifiable execution, whereby
a client that offloads a computation to untrusted computing resources, e.g., to a cloud
system, receives a proof which attests that the results have indeed been produced by the
execution of the offloaded computation. This property is also known as computational
integrity and can be proved using PCPs in which the prover (e.g. the cloud system)
proves the computational integrity of a given computation to a verifier (e.g. a client).

Since the prover is computationally unbounded, his role in the PCP protocol can be,
theoretically, expensive in terms of computation. And in practice the prover’s running
time (and space consumption) turns out to be the main bottleneck preventing the system

from running in feasible time. The prover executes a program and wishes to prove the



computational integrity of its execution to the verifier. To do that it has to encode the
execution trace using error correcting codes that possess some interesting properties.
It is known that error correcting codes that are based on low-degree polynomials have
these properties. Particularly, Ben-Sasson and Sudan in their PCP [E. 08] have used
Reed-Solomon codes [I. 60] that are based on univariate polynomials. With other
additional restrictions it was required that the Reed-Solomon codes will be evaluated
over affine-spaces in finite fields of characteristic-2 or characteristic-q where ¢ — 1 has
small prime factors. The execution encoding algorithm is based on the evaluation and
interpolation of polynomials over affine subspaces. These can be done efficiently using
additive FFTs and inverse FFTs (IFFTs) and the implementation of them in finite

fields of characteristic two is the scope of this work.

Fast Fourier Transforms

Fast Fourier Transforms(FFTs), particularly over finite fields, have a main role in
a large set of applications in the fields of signal and image processing, coding and
cryptography [D. 82,R. 02,F. 95, M. , Wel67, LRRY78, J. 98b].

The discrete Fast-Fourier-Transform (DFFT) algorithm for finite fields takes as
input a polynomial P(x) over a finite field GF (pk) and an a set of finite field elements
and calculates P(«) for all « in that set. The inverse discrete fast Fourier transform
(IDFFT) algorithm takes as input a function f : S — GF (p*) where S is a set of
elements from GF (pk) of size n and calculates the interpolation polynomial P(x) over
GF (p*) of degree n — 1 such that for each a € S : P(a) = f(«).

In 1965 the study of the implementation of DFFT algorithms has began by James
Cooley and John Tukey who published in their historical paper [J. 65] a full description
of an implementation for a DFFT algorithm known to Gauss [Gau66]. This algorithm
was a multiplicative-FFT, as evaluating a polynomial over a set that is a multiplicative
group and by that utilizing some of the multiplicative properties of that group. In finite
fields of low characteristic (e.g. GF(2") there are also additive subgroups over which
DFFT algorithm can work. These algorithms, known as additive-DFFTs, evaluate
a polynomial over a linear subspace. The computation of additive DFFTs in finite
fields over affine subspaces is considered as a simpler and more scalable method than
multiplicative DFFTs due to the additive and recursive structure of subspaces in finite
fields. In this work we focus on the implementation of additive DFFTs and additive
IDFFTs to which we will simply refer as FFTs and IFFTs, as non-discrete FFTs are
out of the scope of this work. The first additive FFT / IFFT algorithm for a subspace
of size n was the algorithm of Von-Zur-Gather and Gerhard that was published in [J.
03]. This algorithm performs O(n - log? n) finite field multiplications and additions. In
practice, finite field multiplication, is much slower and consumes and might consume a
large portion of the running time. Therefore, we wish to find an FFT algorithm that

achieves two goals,



1. Minimizes the number of finite-field multiplications
2. Minimize the time that each multiplication takes.

In this work we present an adaptation of Gao and Matteer’s additive FFT and IFFT
algorithm to affine subspaces over finite fields of characteristic two [S. 10] with a smaller
number of finite field multiplications of O(n -logn), compare to Von-Zur-Gather and
Gerhard’s algorithm.

We present an implementation of this algorithm to the GPU architectures and
evaluate its performance. We implemented a CPU version of the algorithm as well.
However, the full details of the implementation of the CPU algorithm is out of the scope
of this work and we focus on the GPU implementation.

For completeness, we clarify that the CPU implementation of FF'T achieves good
running times and can evaluate polynomials of degree 230 over 230 elements in less than
20 minutes in our benchmark using a single thread. However, it scales badly on a high
number of CPUs. The reason of this lack of scalability on CPU is left out of the scope
of this work.

The GPU implementation gives more than 16x throughput compared to the serial
CPU implementation. These implementations’ performance heavily relies on the exis-
tence of efficient finite field multiplication an the implementation of such on the GPU

architecture is the main focus of this work.

Finite Fields

Except for additive FFTs, binary fields have numerous applications in cryptography
and data storage. For instance, the Advanced Encryption Standard (AES) [J. 98a]
uses GF (28), as does the error correction scheme used on Compact Discs (CDs) and
Digital Versatile Discs (DVDs). Large fields are the basis for distributed storage systems
like those used by Google and Amazon, which employ fields of size 232,264 and 228 to
ensure secure and reliable storage of data on multiple disks [J. 12]. They are also the
basis for the application motivating this work: an efficient implementation of a family
of probabilistically checkable proofs (PCP) of quasi-linear length [E. 08]. PCPs require
very large binary fields: most of our work focuses on GF (232) and GF (264) but we also
support fields of up to GF(22048). Because all the applications mentioned above need
to perform multiplication of a large number of finite field elements, their performance is
dominated by the cost of finite field multiplication, motivating the never-ending quest
for more efficient implementations of this fundamental arithmetic operation.

In this work we focus on accelerating finite field multiplication for large binary
extension fields of size larger than GF (232) on GPUs, where field elements are represented
using a standard basis (cf. Chapter 2 for definitions). The main computational bottleneck
in this case is the multiplication of polynomials over GF(2), that is, polynomials with

{0, 1}-coefficients. The challenge posed by polynomial multiplication operations over



GF(2) has led Intel and AMD to add an instruction set extension CLMUL to support it
in hardware.

We devise a novel parallel algorithm for multiplication in large binary extension fields
on GPUs, which significantly outperforms the dedicated CPU hardware implementation.
The algorithm is based on two main ideas: First, we apply bit-slicing, enabling a single
thread to perform 32 multiplications in parallel. As a result, all the arithmetic operations
involved in multiplication are performed on 32 bits together instead of a single bit at a
time for single multiplication, therefore matching the width of hardware registers and
enabling full ALU utilization. Second, the computation of a single multiplication is
further parallelized in a fine-grained manner to eliminate execution divergence among
the participating threads. This critical step allows these computations to be mapped to
the threads of a single GPU warp, whose threads are executed in lock-step.

We then focus on an implementation of the algorithm on modern NVIDIA GPUs.
The key to implementation efficiency is a novel optimization technique that we call the
register cache. The register cache enables us to use per-thread registers in conjunction
with the shuffle() intrinsics, that enables intra-warp sharing of register values among
threads, to construct a register-based cache for threads in a single warp. This cache
serves the same purpose as the on-die shared memory, but is much faster thanks to higher
bandwidth and reduced synchronization overhead. We propose a general methodology
for transforming a traditional algorithm that stores its inputs in shared memory into a
potentially more efficient one that uses private per-thread registers to cache the input
for the warp’s threads. We thoroughly study the benefits and limitations of the register
cache approach on the example of a well-known k-Stencil kernel.

Finally, we apply the register cache methodology to optimize the implementation
of the finite field multiplication algorithm for GF(QN ), where N=32,...,2048. The
primary challenge is to scale the efficient single-warp implementation to larger fields
while retaining the performance benefits of the register cache methodology. We analyze
several design options, and apply an algorithm that uses a low-degree multiplication as
a building block for multiplication in larger fields.

We evaluate our implementation across a variety of field and input sizes using
NVIDIA Titan-X GPU with 12GB of memory, and compare it to a highly optimized
CPU version of a popular Number Theory Library (NTL) [V. 03] running on a single
core of Intel® Xeon® CPU E5-2620 v2 @ 2.10GHz that uses the Intel’s CLMUL CPU
instruction set extension. Our optimized implementation that uses register cache is up to
138x faster than NTL for GF (232) when multiplying more than 2% finite field elements.
The register cache approach enables us to speed up the original shared memory version
by about 50% over all field sizes.

Our contributions in this thesis are as follows:

1. A novel algorithm for polynomial multiplication over GF(2) on GPUs,

2. A general optimization methodology for using GPU registers as an intra-warp

user-managed cache, along with an in depth analysis of this approach and its



application to polynomial multiplication.

3. Efficient GPU finite field multiplication that is up to two orders of magnitude
faster in fields (GF(2%?)) than the CPU implementation that uses the specialized
hardware instruction.

4. Efficient parallel implementation on CPU and cuda-GPU architectures of the
additive FFT and inverse FFT algorithms.

This work is organized as follows. In chapter 2 we give some introductory background
information on the theory of finite fields. In chapter 3 we present the problem of finite
field multiplication in binary fields and discuss some previous results in that field. We
also present the FFT algorithm which we implement in this work. In chapter 4 we
briefly present the outlines of our CPU implementation of the FFT algorithm. Chapter
5 introduces the reader to the architecture and computational model of the GPU. In
chapter 5.2 we introduce the Register Cache methodology to accelerate computation
on GPU via caching values in registers. A small use-case example is given in which
the benefits of this methodology are present. In chapter 6 we apply the register cache
methodology on the multiplication of elements in binary fields. Chapter 7 discusses
the implementation of the FFT algorithm in cuda-GPUs. Chapter 8 presents the
performance evaluation of our finite field multiplication and FFT algorithms. Main

conclusions and open questions for further research are given at chapter 9.

Related work

2-gapped polynomials The CPU implementation of NTL [V. 03] for the multi-
plication in binary fields uses the CLMUL [G. 14] instruction and employs 2-gapped
polynomials to replace reduction with multiplications. We apply a similar algorithm in

our work.

SIMD and bit-slicing The CPU SIMD instructions have been used to perform bit-
slicing to parallelize GF(2") multiplication [J. 13]. Their implementation, however, is
limited to small fields (up to GF(2%?)). The GPU architecture suits SIMD computation
and can provide the same functionality as the CPU SIMD instruction set [S. 11]. The
proposed implementation is, however, also limited to small fields (e.g GF(216)). Our

implementation applies to larger fields.

Finite field multiplication on GPUs The previous works [J. 13,S. 11] are limited

232, Particularly, Plank [J. 13] shows a CPU implementation

to fields of size smaller than
that deals with computing a product of multiple elements by a single scalar, using
scalar-dependent pre-computed lookup tables. Our work focuses on multiplying many
pairs of arbitrary elements, therefore the lookup table approach is inapplicable.
Cohen et al. [A. 10] describes an implementation of finite field multiplication in

specific binary fields. The performance reported in their paper is 3-orders of magnitude



slower than the performance reported in our work, and their implementation would
benefit from bit slicing, register cache and reduced synchronization techniques presented
here.

An implementation of finite field multiplication on GPUs over GF(q) for some
specific large NIST primes g is discussed in [K. 12]. Our implementation, however, is
optimized for binary fields in a scalable fashion to achieve a generic implementation for

a large variety of field sizes.

Register-based optimizations The benefits of reusing data in registers on GPUs
to boost performance are well known. Volkov and Demmel [V. | present GPU imple-
mentations of LU decomposition and SGEMM.

Enfedaque et al. [P. 15] show how to implement the DWT (discrete wavelet transform)
of an image of varying sizes where each warp calculates a different part of the output.
They also show that shuffle-based communication achieves better results when the data
each warp fetches from global memory is reused more times, as also confirmed by our
results (cf. Section 5.2).

Davidson and Owens [A. 11] suggest a method called register packing to reduce
shared memory traffic in GPU when dealing with a downsweep patterned computation,
by performing some parts of the computation in registers.

Catanzaro et al. [B. 14] show a shuffle-based implementation for SIMD architectures,
including the GPU. They discuss the benefits of the instruction for reducing shared-
memory bandwidth and show the relation to the Array of Structs — Struct of Arrays
transforms.

nVIDIA’s Kepler Tuning Guide [nVil5] stresses the benefits of registers over shared
memory in terms of latency and capacity. The shuffle instruction is suggested as an
alternative for the use of shared memory in some cases.

We leverage the lessons learned in the previous work, and take one additional step
by suggesting a register cache design methodology for reducing shared memory accesses
to the input data. We demonstrate the application of this methodology on a challenging
case of finite field multiplication in binary fields, and show that it achieves significant

performance benefits.



Chapter 2

Preliminaries

This chapter briefly reminds the basic elements of polynomial rings and Galois fields
that are necessary to our implementation of additive FFTs. For a thorough introduction
to Galois fields see, e.g., [R. 97a].

The structure of this chapter is a follows; First a general definition to finite fields is
given, then we discuss two of the most common representations for finite field elements,
the Polynomial Bases and Normal Bases.

In the following chapters all references to finite field elements assume these are
represented using a polynomial basis. The definition of a normal basis, being yet another
popular representation for finite fields elements, is given here for completeness. We do
not discuss the implementation of finite field multiplication represented using normal

bases in this work.

2.1 Finite Extension Fields’ Elements and Bases!

2.1.1 Definitions

A finite field or Galois field is a field with a finite number of elements. It is known that
the number of elements in a finite field can only be a power of a prime number. Let p
be a prime and ¢ be a power of p, we denote by GF(¢") or Fyn the Galois-Field with
q" elements, which can be viewed as an extension field over Fy of order n. Therefore
Fyn can interpreted as a vector space of dimension n over Fy. Let ag, a1,...,0,-1 be n
linearly independent elements in Fy» over F,. Any element e € Fy» can be represented
as e = Z?:_ol a; - o; where a; € F,. We use the notation e = (ap, a1, ...,ap—1) to state
the e = Z?;ol a; - oy

Let a = (ag,a1,...,an—-1), b = (bo, b1,...,bp—1) be two elements in Fyn. The addition
of a and b is defined as a + b = (ag + by, a1 + b1,...,an—1 + by—1) which is a simple
component-wise addition of the entries of a and b over F,. However, multiplication

tends to be not only more complicated but also more time consuming. We now give

!Definitions are based on [Gao93]



a general definition for the multiplication operation over finite extension fields using

multiplication tables.

Denote by 79 T, ..., 7"~ be n matrices of size n x n over Fy s.t.

n—1
oL = Z T-k-ouz€
J 1]
k=0

So, T£ is the coefficient of ay, in the product of a; with «;. Given three elements
a,b,c € Fyn such that ¢ = a-b and ¢ = (co,c1,...,¢p—1) the component ¢ in the

multiplication @ - b is defined as ¢ = a - T% - b.

2.2 Polynomial Bases

The ring of polynomials Given a prime p GF (p) is the field with p elements
(0,1,...,p— 1), with addition (&) and multiplication (®) performed modulo p.

GF (2) is a field with two elements (0, 1), with addition (¢) and multiplication
(®) performed modulo 2. A polynomial over GF(2) is an expression of the form
A(z) := Z?:o a;z', where a; € GF (2) and x is a formal variable; henceforth we simply
call A(z) a polynomial because all finite field elements in this work are represented as
polynomials over GF (2). The degree of A, denoted deg(A), is the largest index i such
that a; # 0. Addition and multiplication of polynomials (also called ring addition and
multiplication) are defined in the natural way, i.e., for B(z) = YI* bz’ with m > d
we have A(x) @ B(z) = > 1" (a; ® b))z’ and A(z) ® B(x) = Zjién 2l @LO a; ©bj_;.
The set of polynomials, augmented with the operations of addition and multiplication
defined above, forms the ring of polynomials over GF(2), denoted GF (2) [z]. Later,
we reduce the problem of efficient multiplication in the field GF (2") to the problem of
multiplying polynomials in the ring GF (2) [z].

The standard representation of a binary field The most common way to repre-
sent GF (2"), also used here, is via a standard basis, as described next. A polynomial
r(z) € GF (2) [z] of degree n is called irreducible if there is no pair of polynomials
g(x), f(z) € GF (2) [z] such that r(z) = g(z) ® f(x) and deg(g),deg(f) < n. Many
irreducible polynomials exist for every degree n. (Later, a special class of irreducible
polynomials will be used to speed up multiplication.) Having fixed an irreducible r(z),
for every pair A, B of polynomials of degree < n, there exists a unique polynomial
C of degree < n such that r(z) divides A(x) ® B(z) ® C(z) in the ring GF (2) [z];
i.e., there exists C’(z) such that A(x) ® B(z) & C(z) = r(x) ® C'(x). Denote the
transformation that maps the pair of polynomials (A(x), B(x)) to the polynomial C(x)
by ®;., where r is used to emphasize that this transformation depends on the irreducible

polynomial r(x). The set of polynomials of degree < n, along with ring addition @& and
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